Abstract

The virtually-imaged phased array (VIPA) is a side-entrance etalon with potential application as a high-resolution spectral disperser for wavelength division multiplexing. Here we present an approximate analytical spectral dispersion law for the VIPA, which we confirm experimentally.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto, Opt. and Quant. Elec. 31, 107–129 (1999).
    [CrossRef]
  2. M. Shirasaki, Opt. Lett. 21, 366–368 (1996).
    [CrossRef] [PubMed]
  3. M. Shirasaki, IEEE Phot. Tech. Lett. 9, 1598–1560 (1997).
    [CrossRef]
  4. M. Shirasaki, A. N. Akhter, C. Lin, IEEE Phot. Tech. Lett. 11, 1443–1445 (1999).
    [CrossRef]
  5. M. Shirasaki, S. Cao, OSA Trends in Optics and Photonics (TOPS) Vol 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC2001), TuSI pp 1–3.
  6. O. Lummer, E. Gehrcke, Ann. D. Physik, 10, 457–477 (1903).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1999), pp. 380–386.
  8. C. Dufour, Rev. d’Opt 24, 11–18 (1945).
  9. Y. T. Mazurenko, Opt. Spectr. 69, 241–243 (1990).
  10. M. Shirasaki, Y. Kawahata, S. Cao, H. Ooi, N. Mitamura, H. Isono, G. Ishikawa, G. Barbarossa, C. Yang, C. Lin, European Conference on Optical Communications(ECOC2000), Postdeadline paper 2.3.
  11. A. M. Weiner, Rev. Sci. Instr. 71, 1929–1960 (2000).
    [CrossRef]
  12. E. Hecht, Optics (Addison Wesley, Reading, Mass.1998), pp. 413–416.
  13. S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1993), pp. 630–637.
  14. J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, Bristol, 1989), pp. 104–105.
  15. S. DeSilvestri, P. Laporta, A. Svelto, Opt. Lett. 9, 335–337 (1984).
    [CrossRef]

2000 (1)

A. M. Weiner, Rev. Sci. Instr. 71, 1929–1960 (2000).
[CrossRef]

1999 (2)

K. Okamoto, Opt. and Quant. Elec. 31, 107–129 (1999).
[CrossRef]

M. Shirasaki, A. N. Akhter, C. Lin, IEEE Phot. Tech. Lett. 11, 1443–1445 (1999).
[CrossRef]

1997 (1)

M. Shirasaki, IEEE Phot. Tech. Lett. 9, 1598–1560 (1997).
[CrossRef]

1996 (1)

1990 (1)

Y. T. Mazurenko, Opt. Spectr. 69, 241–243 (1990).

1984 (1)

1945 (1)

C. Dufour, Rev. d’Opt 24, 11–18 (1945).

1903 (1)

O. Lummer, E. Gehrcke, Ann. D. Physik, 10, 457–477 (1903).
[CrossRef]

Akhter, A. N.

M. Shirasaki, A. N. Akhter, C. Lin, IEEE Phot. Tech. Lett. 11, 1443–1445 (1999).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1999), pp. 380–386.

Cao, S.

M. Shirasaki, S. Cao, OSA Trends in Optics and Photonics (TOPS) Vol 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC2001), TuSI pp 1–3.

DeSilvestri, S.

Dufour, C.

C. Dufour, Rev. d’Opt 24, 11–18 (1945).

Gehrcke, E.

O. Lummer, E. Gehrcke, Ann. D. Physik, 10, 457–477 (1903).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison Wesley, Reading, Mass.1998), pp. 413–416.

Laporta, P.

Lin, C.

M. Shirasaki, A. N. Akhter, C. Lin, IEEE Phot. Tech. Lett. 11, 1443–1445 (1999).
[CrossRef]

Lummer, O.

O. Lummer, E. Gehrcke, Ann. D. Physik, 10, 457–477 (1903).
[CrossRef]

Mazurenko, Y. T.

Y. T. Mazurenko, Opt. Spectr. 69, 241–243 (1990).

Okamoto, K.

K. Okamoto, Opt. and Quant. Elec. 31, 107–129 (1999).
[CrossRef]

Ramo, S.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1993), pp. 630–637.

Shirasaki, M.

M. Shirasaki, A. N. Akhter, C. Lin, IEEE Phot. Tech. Lett. 11, 1443–1445 (1999).
[CrossRef]

M. Shirasaki, IEEE Phot. Tech. Lett. 9, 1598–1560 (1997).
[CrossRef]

M. Shirasaki, Opt. Lett. 21, 366–368 (1996).
[CrossRef] [PubMed]

M. Shirasaki, S. Cao, OSA Trends in Optics and Photonics (TOPS) Vol 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC2001), TuSI pp 1–3.

Svelto, A.

Van Duzer, T.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1993), pp. 630–637.

Vaughan, J. M.

J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, Bristol, 1989), pp. 104–105.

Weiner, A. M.

A. M. Weiner, Rev. Sci. Instr. 71, 1929–1960 (2000).
[CrossRef]

Whinnery, J. R.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1993), pp. 630–637.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1999), pp. 380–386.

Ann. D. Physik (1)

O. Lummer, E. Gehrcke, Ann. D. Physik, 10, 457–477 (1903).
[CrossRef]

IEEE Phot. Tech. Lett. (2)

M. Shirasaki, IEEE Phot. Tech. Lett. 9, 1598–1560 (1997).
[CrossRef]

M. Shirasaki, A. N. Akhter, C. Lin, IEEE Phot. Tech. Lett. 11, 1443–1445 (1999).
[CrossRef]

Opt. and Quant. Elec. (1)

K. Okamoto, Opt. and Quant. Elec. 31, 107–129 (1999).
[CrossRef]

Opt. Lett. (2)

Opt. Spectr. (1)

Y. T. Mazurenko, Opt. Spectr. 69, 241–243 (1990).

Rev. d’Opt (1)

C. Dufour, Rev. d’Opt 24, 11–18 (1945).

Rev. Sci. Instr. (1)

A. M. Weiner, Rev. Sci. Instr. 71, 1929–1960 (2000).
[CrossRef]

Other (6)

E. Hecht, Optics (Addison Wesley, Reading, Mass.1998), pp. 413–416.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1993), pp. 630–637.

J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, Bristol, 1989), pp. 104–105.

M. Shirasaki, Y. Kawahata, S. Cao, H. Ooi, N. Mitamura, H. Isono, G. Ishikawa, G. Barbarossa, C. Yang, C. Lin, European Conference on Optical Communications(ECOC2000), Postdeadline paper 2.3.

M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1999), pp. 380–386.

M. Shirasaki, S. Cao, OSA Trends in Optics and Photonics (TOPS) Vol 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC2001), TuSI pp 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of an air-spaced VIPA.

Fig. 2
Fig. 2

Spatial intensity profile for a 0.375-mm thick air-spaced VIPA, measured at the back focal plane of Fourier-transform lens, with θinput = 8.6° and input wavelength of 1546.5 nm.

Fig. 3
Fig. 3

Output power spectra for air-spaced VIPA, measured with broadband input and θinput = 11.1°, for various output angles (i.e., various spatial positions of the output sampling fiber).

Fig. 4
Fig. 4

Measured (symbols) and calculated (solid lines) FSR for air-spaced VIPA, for various input and output angles. VIPA air-gap thickness is 375 μm.

Fig. 5
Fig. 5

Measured (symbols) and calculated (solid lines) FSR for solid VIPA, for various input and output angles. VIPA thickness is 100 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω 2Lc1cos θinput-tan θinput sinθinput+θoutput=2mπ,
FSR=c2L1cos θinput-tan θinput sinθinput+θoutput-1.
ω 2Lcncos θinternal-tan θinternal sinθinput+θoutput=2mπ,

Metrics