Abstract

Dynamic behavior of an analog-to-digital converter (ADC) based on diffractive optical element(s) (DOE)(s) was studied and found to be in agreement with predictions. The analog signal was translated to an angular deflection of a laser beam by means of an acousto-optic (AO) cell. The number of bits in this experimental demonstration was three, using an eight-element DOE array. The maximum sample rate was found to be 2.5 MS/s, the limiting factor being the transit time for the acoustic wave across the width of the laser beam in the AO cell. The study is intended as a first dynamic demonstration of a proposed ADC scheme previously demonstrated in a quasi-static version. The full potential of the ADC scheme will require the use of a fast tunable diode laser to replace the AO deflection scheme used here.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer-Verlag, Berlin, 2001).
    [CrossRef]
  2. R. A. Becker, C. E. Woodward, F. J. Leonberger, R. C. Williamson, “Wide-band electrooptic guided-wave analog-to-digital converters.” Proc. IEEE 72, 802–819 (1984).
    [CrossRef]
  3. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
    [CrossRef]
  4. Y. Tsunoda, J. W. Goodman, “Combined optical AD conversion and page composition for holographic memory applications,” Appl. Opt. 16, 2607–2609,(1977).
    [CrossRef] [PubMed]
  5. M. Johansson, B. Löfving, S. Hård, L. Thylén, M. Mokhtari, U. Westergren, C. Pala, “Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics,” Appl. Opt. 39, 2881–2887 (2000).
    [CrossRef]
  6. C. Pala, L. Thylén, M. Mokhtari, U. Westergren, “A high-speed electro-optical analog-to-digital converter principle,” Proceedings of the 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, 1, 432–435 (2001).
  7. M. Ekberg, M. Larsson, S. Hård, B. Nilsson, “Multilevel phase holograms manufactured by electron-beam lithography,” Opt. Lett. 15, 568–570 (1990).
    [CrossRef] [PubMed]
  8. M. Ekberg, F. Nikolajeff, M. Larsson, S. Hård, “Proximity-compensated blazed transmission grating manufactured with direct-writing, electron-beam lithography,” Appl. Opt. 33, 103–107, (1994).
    [CrossRef]
  9. R. H. Walden, “Analog-to-Digital Converter Survey and Analysis”, IEEE J. Select. Areas Commun. 17, 539–550, (1999).
    [CrossRef]
  10. P.-J. Rigole, M. Shell, S. Nilsson, D. J. Blumentahl, E. Berglind, “Fast wavelength switching in a widely tunable GCSR laser using a pulse pre-distortion technique,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 231–232.
  11. L. Thylén, Dept. of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, SE-164 40 Kista, Sweden (personal communication).

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

2000 (1)

1999 (1)

R. H. Walden, “Analog-to-Digital Converter Survey and Analysis”, IEEE J. Select. Areas Commun. 17, 539–550, (1999).
[CrossRef]

1994 (1)

1990 (1)

1984 (1)

R. A. Becker, C. E. Woodward, F. J. Leonberger, R. C. Williamson, “Wide-band electrooptic guided-wave analog-to-digital converters.” Proc. IEEE 72, 802–819 (1984).
[CrossRef]

1977 (1)

Becker, R. A.

R. A. Becker, C. E. Woodward, F. J. Leonberger, R. C. Williamson, “Wide-band electrooptic guided-wave analog-to-digital converters.” Proc. IEEE 72, 802–819 (1984).
[CrossRef]

Berglind, E.

P.-J. Rigole, M. Shell, S. Nilsson, D. J. Blumentahl, E. Berglind, “Fast wavelength switching in a widely tunable GCSR laser using a pulse pre-distortion technique,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 231–232.

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

Blumentahl, D. J.

P.-J. Rigole, M. Shell, S. Nilsson, D. J. Blumentahl, E. Berglind, “Fast wavelength switching in a widely tunable GCSR laser using a pulse pre-distortion technique,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 231–232.

Ekberg, M.

Goodman, J. W.

Hård, S.

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

Johansson, M.

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

Larsson, M.

Leonberger, F. J.

R. A. Becker, C. E. Woodward, F. J. Leonberger, R. C. Williamson, “Wide-band electrooptic guided-wave analog-to-digital converters.” Proc. IEEE 72, 802–819 (1984).
[CrossRef]

Löfving, B.

Mokhtari, M.

M. Johansson, B. Löfving, S. Hård, L. Thylén, M. Mokhtari, U. Westergren, C. Pala, “Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics,” Appl. Opt. 39, 2881–2887 (2000).
[CrossRef]

C. Pala, L. Thylén, M. Mokhtari, U. Westergren, “A high-speed electro-optical analog-to-digital converter principle,” Proceedings of the 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, 1, 432–435 (2001).

Nikolajeff, F.

Nilsson, B.

Nilsson, S.

P.-J. Rigole, M. Shell, S. Nilsson, D. J. Blumentahl, E. Berglind, “Fast wavelength switching in a widely tunable GCSR laser using a pulse pre-distortion technique,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 231–232.

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

Pala, C.

M. Johansson, B. Löfving, S. Hård, L. Thylén, M. Mokhtari, U. Westergren, C. Pala, “Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics,” Appl. Opt. 39, 2881–2887 (2000).
[CrossRef]

C. Pala, L. Thylén, M. Mokhtari, U. Westergren, “A high-speed electro-optical analog-to-digital converter principle,” Proceedings of the 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, 1, 432–435 (2001).

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

Rigole, P.-J.

P.-J. Rigole, M. Shell, S. Nilsson, D. J. Blumentahl, E. Berglind, “Fast wavelength switching in a widely tunable GCSR laser using a pulse pre-distortion technique,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 231–232.

Shell, M.

P.-J. Rigole, M. Shell, S. Nilsson, D. J. Blumentahl, E. Berglind, “Fast wavelength switching in a widely tunable GCSR laser using a pulse pre-distortion technique,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 231–232.

Shoop, B. L.

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer-Verlag, Berlin, 2001).
[CrossRef]

Thylén, L.

M. Johansson, B. Löfving, S. Hård, L. Thylén, M. Mokhtari, U. Westergren, C. Pala, “Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics,” Appl. Opt. 39, 2881–2887 (2000).
[CrossRef]

C. Pala, L. Thylén, M. Mokhtari, U. Westergren, “A high-speed electro-optical analog-to-digital converter principle,” Proceedings of the 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, 1, 432–435 (2001).

L. Thylén, Dept. of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, SE-164 40 Kista, Sweden (personal communication).

Tsunoda, Y.

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

Walden, R. H.

R. H. Walden, “Analog-to-Digital Converter Survey and Analysis”, IEEE J. Select. Areas Commun. 17, 539–550, (1999).
[CrossRef]

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

Westergren, U.

M. Johansson, B. Löfving, S. Hård, L. Thylén, M. Mokhtari, U. Westergren, C. Pala, “Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics,” Appl. Opt. 39, 2881–2887 (2000).
[CrossRef]

C. Pala, L. Thylén, M. Mokhtari, U. Westergren, “A high-speed electro-optical analog-to-digital converter principle,” Proceedings of the 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, 1, 432–435 (2001).

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

R. A. Becker, C. E. Woodward, F. J. Leonberger, R. C. Williamson, “Wide-band electrooptic guided-wave analog-to-digital converters.” Proc. IEEE 72, 802–819 (1984).
[CrossRef]

Woodward, C. E.

R. A. Becker, C. E. Woodward, F. J. Leonberger, R. C. Williamson, “Wide-band electrooptic guided-wave analog-to-digital converters.” Proc. IEEE 72, 802–819 (1984).
[CrossRef]

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

Appl. Opt. (3)

IEEE J. Select. Areas Commun. (1)

R. H. Walden, “Analog-to-Digital Converter Survey and Analysis”, IEEE J. Select. Areas Commun. 17, 539–550, (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

R. A. Becker, C. E. Woodward, F. J. Leonberger, R. C. Williamson, “Wide-band electrooptic guided-wave analog-to-digital converters.” Proc. IEEE 72, 802–819 (1984).
[CrossRef]

Other (4)

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer-Verlag, Berlin, 2001).
[CrossRef]

C. Pala, L. Thylén, M. Mokhtari, U. Westergren, “A high-speed electro-optical analog-to-digital converter principle,” Proceedings of the 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, 1, 432–435 (2001).

P.-J. Rigole, M. Shell, S. Nilsson, D. J. Blumentahl, E. Berglind, “Fast wavelength switching in a widely tunable GCSR laser using a pulse pre-distortion technique,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 231–232.

L. Thylén, Dept. of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, SE-164 40 Kista, Sweden (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental set-up of the ADC. The laser beam is deflected by the AO, the angle of deflection ϕ determined by the analog signal. After the AO, the beam is incident on one of eight DOEs, each one splitting the beam into three subbeams that are directed toward three of six stationary detectors.

Fig. 2
Fig. 2

Eight-element DOE array with the corresponding eight Gray coded diffraction patterns. For each pattern, the upper three spots make up the bit code. The lower three spots show the complementary bit code. Open circles indicate bright spots, while filled circles indicate the absence of a spot. The highest row of spot positions represents the least significant bit, the second row the intermediate bit, and the third row the most significant bit. The complementary pattern is a mirror image. (The spot configuration was designed to fit a particular multidetector device.)

Fig. 3
Fig. 3

Frequency sweeping of the AO by ramping. V denotes the voltage to the AO while ϕ denotes the angle of the deflected beam.

Fig. 4
Fig. 4

Alternate driving of the AO with two frequencies, V and ϕ as in Fig. 3.

Fig. 5
Fig. 5

Oscilloscope traces from detector pairs reading bits of the same significance. The traces were obtained by a linear frequency sweep, covering the whole DOE array. The bit code is represented by M1, C1, and L1, while the complementary bit code is represented by M0, C0, and L0. Decision levels indicated by arrows.

Fig. 6
Fig. 6

Superposition of the signals shown in Fig. 5. The decision level is seen to vary with the frequency as the diffraction efficiency of the AO is frequency dependent. The spot pattern generated by each DOE is indicated, with open circles indicating bright spots. Here, we show a stylized spot pattern instead of the geometrical spot pattern actually used (see Fig. 2).

Fig. 7
Fig. 7

Oscilloscope traces from a detector pair reading the two signals of the most significant bit. The traces are obtained by alternate driving of the AO with two frequencies, the frequencies are chosen to yield centered illumination on the third and the sixth array elements. The frequency of the square wave controlling the switch is f s = (a) 500 kHz, (b) 1 MHz, and (c) 2 MHz. Rise time, τ, is indicated in (a).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2Λsin θ = λ,
M=υDAO.
N-1=LΔϕDDOE.
DAO DDOE=DDOE2=4λ0Lπ.
N-1 M=π Δf4.

Metrics