Abstract

It is shown that a relief is generated when spatial distributions of infrared light (λ = 10.6 μm) are recorded on albumen films. The relief can be applied to the fabrication of microelements, such as diffraction gratings and microlenses. Examples are shown.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kobayashi, K. Kurihara, “Infrared holography with wax and gelatin films,” Appl. Phys. Lett. 19, 482–484 (1971).
    [CrossRef]
  2. R. Bealieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
    [CrossRef]
  3. M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographie en infrarouge sur des minces couches d’huile,” Appl. Opt. 17, 3622–3626 (1978).
    [CrossRef] [PubMed]
  4. J. Lewandowsky, B. Mongeau, M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
    [CrossRef]
  5. S. Calixto, “Infrared recording with gelatin films,” Appl. Opt. 27, 1977–1983 (1988). See references therein.
    [CrossRef] [PubMed]
  6. S. Calixto, M. Salazar, M. Servin, “Photosensitive element for an infrared to visible image converter,” Appl. Opt. 34, 3589–3594 (1995).
    [CrossRef] [PubMed]
  7. R. Beaulieu, R. A. Lessard, S. Ling Chin, “Resist recording media for holography at 10.6 mm,” in Photopolymers and applications in holography, optical data storage, optical sensors, and interconnects, R. A. Lessard, ed. Proc. SPIE2042, 280–284 (1994).
    [CrossRef]
  8. S. Calixto, “Silicone microlenses and interference gratings,” Appl. Opt. 41, 3355–3361 (2002).
    [CrossRef] [PubMed]
  9. J. E. Bailey, David F. Ollis, Biochemical Engineering Fundamentals, (McGraw-Hill, New York, 1986).

2002 (1)

1995 (1)

1988 (1)

1984 (1)

1978 (1)

1977 (1)

R. Bealieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

1971 (1)

S. Kobayashi, K. Kurihara, “Infrared holography with wax and gelatin films,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

Bailey, J. E.

J. E. Bailey, David F. Ollis, Biochemical Engineering Fundamentals, (McGraw-Hill, New York, 1986).

Bealieu, R.

R. Bealieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

Beaulieu, R.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographie en infrarouge sur des minces couches d’huile,” Appl. Opt. 17, 3622–3626 (1978).
[CrossRef] [PubMed]

R. Beaulieu, R. A. Lessard, S. Ling Chin, “Resist recording media for holography at 10.6 mm,” in Photopolymers and applications in holography, optical data storage, optical sensors, and interconnects, R. A. Lessard, ed. Proc. SPIE2042, 280–284 (1994).
[CrossRef]

Blanchard, M.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographie en infrarouge sur des minces couches d’huile,” Appl. Opt. 17, 3622–3626 (1978).
[CrossRef] [PubMed]

R. Bealieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

Calixto, S.

Cormier, M.

Kobayashi, S.

S. Kobayashi, K. Kurihara, “Infrared holography with wax and gelatin films,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

Kurihara, K.

S. Kobayashi, K. Kurihara, “Infrared holography with wax and gelatin films,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

Lessard, R. A.

R. Bealieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

R. Beaulieu, R. A. Lessard, S. Ling Chin, “Resist recording media for holography at 10.6 mm,” in Photopolymers and applications in holography, optical data storage, optical sensors, and interconnects, R. A. Lessard, ed. Proc. SPIE2042, 280–284 (1994).
[CrossRef]

Lewandowsky, J.

Ling Chin, S.

R. Beaulieu, R. A. Lessard, S. Ling Chin, “Resist recording media for holography at 10.6 mm,” in Photopolymers and applications in holography, optical data storage, optical sensors, and interconnects, R. A. Lessard, ed. Proc. SPIE2042, 280–284 (1994).
[CrossRef]

Mongeau, B.

Ollis, David F.

J. E. Bailey, David F. Ollis, Biochemical Engineering Fundamentals, (McGraw-Hill, New York, 1986).

Rioux, M.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographie en infrarouge sur des minces couches d’huile,” Appl. Opt. 17, 3622–3626 (1978).
[CrossRef] [PubMed]

R. Bealieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

Salazar, M.

Servin, M.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

S. Kobayashi, K. Kurihara, “Infrared holography with wax and gelatin films,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

R. Bealieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

Other (2)

R. Beaulieu, R. A. Lessard, S. Ling Chin, “Resist recording media for holography at 10.6 mm,” in Photopolymers and applications in holography, optical data storage, optical sensors, and interconnects, R. A. Lessard, ed. Proc. SPIE2042, 280–284 (1994).
[CrossRef]

J. E. Bailey, David F. Ollis, Biochemical Engineering Fundamentals, (McGraw-Hill, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Recording configuration.

Fig. 2
Fig. 2

(a) Photograph of the surface relief image, (b) cross section relief of the slits showed in (a).

Fig. 3
Fig. 3

(a) Graph showing the infrared intensity values of the image to be recorded, (b) profiles of three recordings. Parameter was the exposure time.

Fig. 4
Fig. 4

(a) Photograph of the infrared interference pattern, (b) Intensity profile of the center of the pattern for comparison with the profile of the pattern recorded on an albumen film. Curves do not have the same scale of the spatial coordinate X.

Fig. 5
Fig. 5

(a) Spatial distribution of infrared (λ = 10.6 μm) diffracted orders, (b) profile of a section of the grating giving the spatial distribution of light shown in (a), (c) spatial distribution of visible (λ = 632.8 nm) diffracted orders.

Fig. 6
Fig. 6

Profile given by an atomic force microscope of a diffraction grating recorded on an albumen film.

Fig. 7
Fig. 7

Profiles of two gratings made with the same amount of energy but with different exposure times.

Fig. 8
Fig. 8

(a) Spatial distribution of infrared light that formed a thermal image of a microlens, (b) profile of a microlens made on albumen film, (c) image of the letter F given by the microlens.

Metrics