Abstract

The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. B. E. Bouma, G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, Inc., New York, 2001).
    [CrossRef]
  3. J. G. Fujimoto, S. A. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
    [CrossRef] [PubMed]
  4. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998).
    [CrossRef]
  5. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
    [CrossRef] [PubMed]
  6. J. F. de Boer, T. E. Milner, M. J. C. van Germert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  7. J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, M. W. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Selected Top. Quantum Electron. 2, 1017–1028 (1996).
    [CrossRef]
  8. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).
  9. A. Kohlhaas, C. Fromchen, E. Brinkmeyer, “High resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm,” J. Lightwave Technol. 9, 1493–1502 (1991).
    [CrossRef]
  10. E. Brinkmeyer, R. Ulrich, “High-Resolution OCDR in dispersive waveguides,” Electron. Lett. 26, 413–414 (1990).
    [CrossRef]
  11. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser, “Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography,” Opt. Express 9, 610–615 (2001).
    [CrossRef] [PubMed]
  12. K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
    [CrossRef] [PubMed]
  13. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
    [CrossRef] [PubMed]
  14. J. M. Schmitt, A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [CrossRef]
  15. Y. Pan, R. Birngruber, R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997).
    [CrossRef] [PubMed]
  16. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817-1–053817-6 (2002).
    [CrossRef]
  17. X. Clivaz, F. Marquis-Weible, R. P. Salathe, “Optical low coherence reflectometry with 1.9 micron spatial resolution,” Electron. Lett. 28, 1553–1555 (1992).
    [CrossRef]
  18. B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:A1203 laser,” Opt. Lett. 20, 1486–1488 (1995).
    [CrossRef] [PubMed]
  19. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  20. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modelocked Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
    [CrossRef] [PubMed]
  21. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, “Study of an ultrahigh numerical aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002).
    [CrossRef]
  22. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  23. M. Bertero, P. Bocacci, Introduction to Inverse Problems in Imaging (IOP Publishing, Philadelphia, 1998).
    [CrossRef]
  24. M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1980).
  25. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995).
    [CrossRef]
  26. M. Bashkansky, J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000).
    [CrossRef]
  27. J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
    [CrossRef] [PubMed]
  28. J. Rogowska, M. E. Brezinski, “Evaluation of the AdaptiveSpeckle Suppression Filter for Coronary Optical Coherence Tomography Imaging,” IEEE Trans. Med. Imaging 14, 1261–1266 (2000).
    [CrossRef]
  29. J. J. Knab, “Interpolation of band-limited functions using the approximate prolate series,” IEEE Trans. Inf. Theory IT-25, 717–720 (1979).
    [CrossRef]
  30. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
    [CrossRef] [PubMed]
  31. J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
    [CrossRef] [PubMed]

2002 (2)

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817-1–053817-6 (2002).
[CrossRef]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, “Study of an ultrahigh numerical aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002).
[CrossRef]

2001 (1)

2000 (3)

J. G. Fujimoto, S. A. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

M. Bashkansky, J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000).
[CrossRef]

J. Rogowska, M. E. Brezinski, “Evaluation of the AdaptiveSpeckle Suppression Filter for Coronary Optical Coherence Tomography Imaging,” IEEE Trans. Med. Imaging 14, 1261–1266 (2000).
[CrossRef]

1999 (3)

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[CrossRef] [PubMed]

1998 (2)

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998).
[CrossRef]

1997 (5)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Germert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

Y. Pan, R. Birngruber, R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
[CrossRef] [PubMed]

1996 (2)

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, M. W. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Selected Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modelocked Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
[CrossRef] [PubMed]

1995 (2)

1992 (1)

X. Clivaz, F. Marquis-Weible, R. P. Salathe, “Optical low coherence reflectometry with 1.9 micron spatial resolution,” Electron. Lett. 28, 1553–1555 (1992).
[CrossRef]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

A. Kohlhaas, C. Fromchen, E. Brinkmeyer, “High resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm,” J. Lightwave Technol. 9, 1493–1502 (1991).
[CrossRef]

1990 (1)

E. Brinkmeyer, R. Ulrich, “High-Resolution OCDR in dispersive waveguides,” Electron. Lett. 26, 413–414 (1990).
[CrossRef]

1979 (1)

J. J. Knab, “Interpolation of band-limited functions using the approximate prolate series,” IEEE Trans. Inf. Theory IT-25, 717–720 (1979).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817-1–053817-6 (2002).
[CrossRef]

Bashkansky, M.

Bertero, M.

M. Bertero, P. Bocacci, Introduction to Inverse Problems in Imaging (IOP Publishing, Philadelphia, 1998).
[CrossRef]

Bilinsky, I. P.

Birngruber, R.

Bocacci, P.

M. Bertero, P. Bocacci, Introduction to Inverse Problems in Imaging (IOP Publishing, Philadelphia, 1998).
[CrossRef]

Bonner, R. F.

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

Boppart, S. A.

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, “Study of an ultrahigh numerical aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002).
[CrossRef]

J. G. Fujimoto, S. A. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:A1203 laser,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1980).

Bouma, B. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modelocked Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:A1203 laser,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Brezinski, M. E.

J. Rogowska, M. E. Brezinski, “Evaluation of the AdaptiveSpeckle Suppression Filter for Coronary Optical Coherence Tomography Imaging,” IEEE Trans. Med. Imaging 14, 1261–1266 (2000).
[CrossRef]

J. G. Fujimoto, S. A. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:A1203 laser,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Brinkmeyer, E.

A. Kohlhaas, C. Fromchen, E. Brinkmeyer, “High resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm,” J. Lightwave Technol. 9, 1493–1502 (1991).
[CrossRef]

E. Brinkmeyer, R. Ulrich, “High-Resolution OCDR in dispersive waveguides,” Electron. Lett. 26, 413–414 (1990).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Clivaz, X.

X. Clivaz, F. Marquis-Weible, R. P. Salathe, “Optical low coherence reflectometry with 1.9 micron spatial resolution,” Electron. Lett. 28, 1553–1555 (1992).
[CrossRef]

de Boer, J. F.

Diels, J.-C.

J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).

Drexler, W.

Engelhardt, R.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fromchen, C.

A. Kohlhaas, C. Fromchen, E. Brinkmeyer, “High resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm,” J. Lightwave Technol. 9, 1493–1502 (1991).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, S. A. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modelocked Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:A1203 laser,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:A1203 laser,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, M. W. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Selected Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Karamata, B.

Kartner, F. X.

Knab, J. J.

J. J. Knab, “Interpolation of band-limited functions using the approximate prolate series,” IEEE Trans. Inf. Theory IT-25, 717–720 (1979).
[CrossRef]

Knuttel, A.

Kobayashi, M. W.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, M. W. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Selected Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Kohlhaas, A.

A. Kohlhaas, C. Fromchen, E. Brinkmeyer, “High resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm,” J. Lightwave Technol. 9, 1493–1502 (1991).
[CrossRef]

Kulkarni, H.-W.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, M. W. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Selected Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Lasser, T.

Lee, S. L.

K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[CrossRef] [PubMed]

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995).
[CrossRef]

Marks, D. L.

Marquis-Weible, F.

X. Clivaz, F. Marquis-Weible, R. P. Salathe, “Optical low coherence reflectometry with 1.9 micron spatial resolution,” Electron. Lett. 28, 1553–1555 (1992).
[CrossRef]

Milner, T. E.

Morgner, U.

Nasr, M. B.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817-1–053817-6 (2002).
[CrossRef]

Nelson, J. S.

Oldenburg, A. L.

Pan, Y.

Pitris, C.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Pitris, S. A.

J. G. Fujimoto, S. A. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Reintjes, J.

Reynolds, J. J.

Rogowska, J.

J. Rogowska, M. E. Brezinski, “Evaluation of the AdaptiveSpeckle Suppression Filter for Coronary Optical Coherence Tomography Imaging,” IEEE Trans. Med. Imaging 14, 1261–1266 (2000).
[CrossRef]

Rudolph, W.

J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).

Salathe, R. P.

X. Clivaz, F. Marquis-Weible, R. P. Salathe, “Optical low coherence reflectometry with 1.9 micron spatial resolution,” Electron. Lett. 28, 1553–1555 (1992).
[CrossRef]

Saleh, B. E. A.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817-1–053817-6 (2002).
[CrossRef]

Schmitt, J. M.

K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef] [PubMed]

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sergienko, A. V.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817-1–053817-6 (2002).
[CrossRef]

Sivak, M. W.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, M. W. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Selected Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
[CrossRef] [PubMed]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modelocked Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:A1203 laser,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Teich, M. C.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817-1–053817-6 (2002).
[CrossRef]

Ulrich, R.

E. Brinkmeyer, R. Ulrich, “High-Resolution OCDR in dispersive waveguides,” Electron. Lett. 26, 413–414 (1990).
[CrossRef]

van Germert, M. J. C.

Wang, K.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, M. W. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Selected Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1980).

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995).
[CrossRef]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef] [PubMed]

Yadlowsky, M. J.

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef] [PubMed]

K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[CrossRef] [PubMed]

Zawadzki, R.

Appl. Opt. (1)

Dermatology (1)

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

Electron. Lett. (2)

E. Brinkmeyer, R. Ulrich, “High-Resolution OCDR in dispersive waveguides,” Electron. Lett. 26, 413–414 (1990).
[CrossRef]

X. Clivaz, F. Marquis-Weible, R. P. Salathe, “Optical low coherence reflectometry with 1.9 micron spatial resolution,” Electron. Lett. 28, 1553–1555 (1992).
[CrossRef]

IEEE J. Selected Top. Quantum Electron. (1)

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, M. W. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Selected Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

IEEE Trans. Inf. Theory (1)

J. J. Knab, “Interpolation of band-limited functions using the approximate prolate series,” IEEE Trans. Inf. Theory IT-25, 717–720 (1979).
[CrossRef]

IEEE Trans. Med. Imaging (1)

J. Rogowska, M. E. Brezinski, “Evaluation of the AdaptiveSpeckle Suppression Filter for Coronary Optical Coherence Tomography Imaging,” IEEE Trans. Med. Imaging 14, 1261–1266 (2000).
[CrossRef]

J. Biomed. Opt. (3)

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef] [PubMed]

K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[CrossRef] [PubMed]

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

A. Kohlhaas, C. Fromchen, E. Brinkmeyer, “High resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm,” J. Lightwave Technol. 9, 1493–1502 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Med. (N.Y.) (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998).
[CrossRef]

Neoplasia (1)

J. G. Fujimoto, S. A. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (1)

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817-1–053817-6 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
[CrossRef] [PubMed]

Science (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (6)

B. E. Bouma, G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, Inc., New York, 2001).
[CrossRef]

J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

M. Bertero, P. Bocacci, Introduction to Inverse Problems in Imaging (IOP Publishing, Philadelphia, 1998).
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1980).

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of Gaussian wavepackets filtered with (a) the envelope detector, (b) the magnitude of the complex-analytic signal. Below are the probability distributions corresponding to finding a reflectance signal with a given magnitude, (a) half-normal distribution, (b) Rayleigh distribution, with their corresponding SNR.

Fig. 2
Fig. 2

Low-resolution OCT image of the PDMS/glass stack. Letters refer to axial scan data shown in Figs. 4 and 5.

Fig. 3
Fig. 3

Source spectrum and modified spectrum in OCT image.

Fig. 4
Fig. 4

Detail of sections of axial scan corresponding to air-PDMS and glass-PDMS boundaries. The corrected scans (b, d, f) are significantly narrower than the original scans (a, c, e), providing an enhancement in axial imaging resolution. Letters refer to boundaries as labeled in Fig. 2.

Fig. 5
Fig. 5

Detail of sections of axial scan corresponding to glass-air boundaries. The corrected scans (h, j, l, n) are significantly narrower than the original scans (g, i, k, m), providing an enhancement in axial imaging resolution. Letters refer to boundaries as labeled in Fig. 2.

Fig. 6
Fig. 6

Measured dispersion in PDMS and glass.

Tables (5)

Tables Icon

Table 1 Algorithm for Dispersion Correction in a Homogeneous Medium

Tables Icon

Table 2 Algorithm for Dispersion Correction in a Homogeneous Medium without Noise Compensation

Tables Icon

Table 3 Algorithm for Dispersion Correction in a Stratified Medium

Tables Icon

Table 4 Simplified Algorithm for Dispersion Correction in a Stratified Medium

Tables Icon

Table 5 Procedure for Dispersion Correction in PDMS-Glass Stack

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

W˜ω=S˜ω0expiϕSz, ωgzdz.
W˜Dt, ω=S˜ωexpiϕDt, ω.
PtΔt=PoissonRΔt+ Δt2π-It, ωηωħωdω
It, ω=S˜ω+ |W˜ω|2S˜ω+2ReW˜ωexp-iϕDt, ω.
PAtΔt=BΔt+Δtπ0W˜ωηωħωexp-iϕDt, ωdω
B=R+12π-ηωS˜ω+ |W˜ω|2S˜ωħωdω.
W˜ω=S˜ω0exp2ikωzgzdz.
W˜k=S˜k0exp2ikzgzdz.
P˜Eω= P˜ωVarP˜SωVarP˜Sω+VarP˜Nω= P˜ω2γS˜ω22γS˜ω2+ Bω2Tηω2ωmax2.
G˜ω= W˜ω2γS˜ω2γS˜ω2+ Bω2Tηω2 ωmax2.
PAt=B+ 1πω0-Δωω0+ΔωW˜ωηωωexp-iϕ0ω-irtϕ1ωdω.
PAt=B+ 1πϕ1ω0-Δωϕ1ω0+Δω P˜ββexp-itβdβ
P˜ββ=W˜ϕ1-1βηϕ1-1β×ϕ1-1βdβdω-1 exp-iϕ0ϕ1-1β.
W˜iβ=t1t0 Ptexpiβrtdt,W˜rβ=t0t2 Ptexpiβrtdt.
ϕSz, ω=2 0z kω, ζdζ.
ϕSz, ω=2z-z1k1ω for z1<z<z2ϕSz, ω=2z-znknω+2 i=1n-1zi+1-zi×kiω for zn<z<zn+1

Metrics