Abstract

Laser-based flying-spot scanners are strongly affected by speckle that is intrinsic to coherent illumination of diffusing targets. In such systems information is usually extracted by processing the derivative of a photodetector signal that results from collecting over the detector’s aperture the scattered light of a laser beam scanning a bar code. Because the scattered light exhibits a time-varying speckle pattern, the signal is corrupted by speckle noise. In this paper we investigate the power spectral density and total noise power of such signals. We also analyze the influence of speckle noise on edge detection and derive estimates for a signal-to-noise ratio when a laser beam scans different sequences of edges. The theory is illustrated by applying the results to Gaussian scanning beams for which we derive closed form expressions.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (122)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription