Abstract

Fluorescence frequency-domain photon migration measurements were acquired from tissue phantoms, each containing a fluorescent target, by means of area illumination and area detection on the same surface and for the first time, to our knowledge, compared with predictions computed with a numerical solution to the coupled photon diffusion equations. We accomplished area illumination and area detection using a planar, intensity-modulated excitation light source and a gain-modulated intensified charge-coupled device camera, respectively. A 1-ml vessel containing 1-μm solution of Indocyanine Green in 1% Liposyn was immersed 1 cm deep in each 512-ml tissue phantom. For most tissue phantoms, the background surrounding the 1-ml target was composed of Liposyn solution containing Indocyanine Green or 3,3′-Diethylthiatricarbocyanine Iodide such that the target-to-background ratio of fluorescence yield was ≥10:1. Measurements of fluorescence modulation amplitude and phase were predicted with a mean error ranging from 10.1% to 13.6% and 0.56° to 1.72°, respectively. These numbers are similar to those obtained by use of single-pixel frequency-domain photon migration techniques and validate the potential use of area illumination and area detection for biomedical imaging of tissues. Results also demonstrate that target-to-background ratios of fluorescence yield and fluorescence lifetime significantly affect target detectability.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, R. Roy, “Near-infrared fluorescence imaging and spectroscopy in random media and tissues,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, Boca Raton, Fla., 2003).
    [CrossRef]
  2. E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
    [CrossRef]
  3. V. Chernomordik, D. Hattery, I. Gannot, A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence—application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 5, 930–935 (1999).
    [CrossRef]
  4. V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
    [CrossRef]
  5. V. Ntziachristos, R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2002).
    [CrossRef]
  6. J. Wu, Y. Wang, L. Perelman, R. Itzkan, R. R. Dasari, M. S. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).
    [CrossRef] [PubMed]
  7. J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
    [CrossRef] [PubMed]
  8. D. J. Hawrysz, M. J. Eppstein, J. Lee, E. M. Sevick-Muraca, “Error consideration in contrast-enhanced three-dimensional optical tomography,” Opt. Lett. 26, 704–706 (2001).
    [CrossRef]
  9. J. Lee, E. M. Sevick-Muraca, “Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths,” J. Opt. Soc. Am. A 19, 759–771 (2002).
    [CrossRef]
  10. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
    [CrossRef] [PubMed]
  11. A. B. Thompson, E. M. Sevick-Muraca, “NIR fluorescence contrast-enhanced imaging with ICCD homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8, 111–120 (2003).
    [CrossRef] [PubMed]
  12. R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).
    [CrossRef] [PubMed]
  13. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
    [CrossRef] [PubMed]
  14. R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
    [CrossRef]
  15. J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13, 669–680 (1997).
    [CrossRef] [PubMed]
  16. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
    [CrossRef] [PubMed]
  17. S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [CrossRef] [PubMed]
  18. S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
    [CrossRef] [PubMed]
  19. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  20. C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
    [CrossRef] [PubMed]
  21. A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–123 (1997).
    [CrossRef] [PubMed]
  22. A. Godavarty, D. J. Hawrysz, R. Roy, E. M. Sevick-Muraca, M. J. Eppstein, “Influence of the refractive index-mismatch at the boundaries measured in fluorescence-enhanced frequency-domain photon migration imaging,” Opt. Express 10, 653–662 (2002), http://www.opticsexpress.org .
    [CrossRef]
  23. J. C. Adams, “mudpack: Multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
    [CrossRef]
  24. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  25. Z. Sun, Y. Huang, E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383–393 (2002).
    [CrossRef]
  26. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  27. D. J. Durian, “Influence of boundary reflection and refraction on diffusive photon transport,” Phys. Rev. E 50, 857–866 (1994).
    [CrossRef]
  28. D. J. Hawrysz, “Bayesian approach to the inverse problem in contrast-enhanced, three dimensional, biomedical optical imaging using frequency domain photon migration,” Ph.D. dissertation (Purdue University, West Lafayette, Ind., 2001).
  29. X. Li, B. Chance, A. G. Yodh, “Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6844 (1998).
    [CrossRef]
  30. R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
    [CrossRef]
  31. M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
    [CrossRef]

2003 (1)

A. B. Thompson, E. M. Sevick-Muraca, “NIR fluorescence contrast-enhanced imaging with ICCD homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8, 111–120 (2003).
[CrossRef] [PubMed]

2002 (5)

V. Ntziachristos, R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2002).
[CrossRef]

J. Lee, E. M. Sevick-Muraca, “Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths,” J. Opt. Soc. Am. A 19, 759–771 (2002).
[CrossRef]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef] [PubMed]

A. Godavarty, D. J. Hawrysz, R. Roy, E. M. Sevick-Muraca, M. J. Eppstein, “Influence of the refractive index-mismatch at the boundaries measured in fluorescence-enhanced frequency-domain photon migration imaging,” Opt. Express 10, 653–662 (2002), http://www.opticsexpress.org .
[CrossRef]

Z. Sun, Y. Huang, E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

2001 (3)

2000 (2)

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).
[CrossRef] [PubMed]

1999 (3)

1998 (2)

1997 (5)

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13, 669–680 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef] [PubMed]

A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–123 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

1994 (3)

1991 (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef] [PubMed]

1989 (2)

J. C. Adams, “mudpack: Multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Achilefu, S. A.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).
[CrossRef] [PubMed]

Adams, J. C.

J. C. Adams, “mudpack: Multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

Alfano, R. R.

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef] [PubMed]

Bugaj, J. E.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).
[CrossRef] [PubMed]

Cerussi, A. E.

Chance, B.

Chernomordik, V.

V. Chernomordik, D. Hattery, I. Gannot, A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence—application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 5, 930–935 (1999).
[CrossRef]

Dasari, R. R.

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

J. Wu, Y. Wang, L. Perelman, R. Itzkan, R. R. Dasari, M. S. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).
[CrossRef] [PubMed]

Demos, S. G.

Dorshow, R. B.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).
[CrossRef] [PubMed]

Dougherty, D. E.

Durian, D. J.

D. J. Durian, “Influence of boundary reflection and refraction on diffusive photon transport,” Phys. Rev. E 50, 857–866 (1994).
[CrossRef]

Eppstein, M. J.

Fantini, S.

Feld, M. S.

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

J. Wu, Y. Wang, L. Perelman, R. Itzkan, R. R. Dasari, M. S. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).
[CrossRef] [PubMed]

Feng, T. C.

Foster, T. H.

Franceschini, M. A.

Gandjbakhche, A. H.

V. Chernomordik, D. Hattery, I. Gannot, A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence—application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 5, 930–935 (1999).
[CrossRef]

Gannot, I.

V. Chernomordik, D. Hattery, I. Gannot, A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence—application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 5, 930–935 (1999).
[CrossRef]

Godavarty, A.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef] [PubMed]

A. Godavarty, D. J. Hawrysz, R. Roy, E. M. Sevick-Muraca, M. J. Eppstein, “Influence of the refractive index-mismatch at the boundaries measured in fluorescence-enhanced frequency-domain photon migration imaging,” Opt. Express 10, 653–662 (2002), http://www.opticsexpress.org .
[CrossRef]

E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, R. Roy, “Near-infrared fluorescence imaging and spectroscopy in random media and tissues,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, Boca Raton, Fla., 2003).
[CrossRef]

Gratton, E.

Haskell, R. C.

Hattery, D.

V. Chernomordik, D. Hattery, I. Gannot, A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence—application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 5, 930–935 (1999).
[CrossRef]

Hawrysz, D. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef] [PubMed]

A. Godavarty, D. J. Hawrysz, R. Roy, E. M. Sevick-Muraca, M. J. Eppstein, “Influence of the refractive index-mismatch at the boundaries measured in fluorescence-enhanced frequency-domain photon migration imaging,” Opt. Express 10, 653–662 (2002), http://www.opticsexpress.org .
[CrossRef]

D. J. Hawrysz, M. J. Eppstein, J. Lee, E. M. Sevick-Muraca, “Error consideration in contrast-enhanced three-dimensional optical tomography,” Opt. Lett. 26, 704–706 (2001).
[CrossRef]

D. J. Hawrysz, “Bayesian approach to the inverse problem in contrast-enhanced, three dimensional, biomedical optical imaging using frequency domain photon migration,” Ph.D. dissertation (Purdue University, West Lafayette, Ind., 2001).

Houston, J. P.

E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, R. Roy, “Near-infrared fluorescence imaging and spectroscopy in random media and tissues,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, Boca Raton, Fla., 2003).
[CrossRef]

Huang, Y.

Z. Sun, Y. Huang, E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

Hull, E. L.

Hutchinson, C. L.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

Itzkan, R.

Jacques, S. L.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Kuwana, E.

E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, R. Roy, “Near-infrared fluorescence imaging and spectroscopy in random media and tissues,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, Boca Raton, Fla., 2003).
[CrossRef]

Lee, J.

Lee, K.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Li, X.

Lopez, G.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Maier, J. S.

Mantulin, W. W.

Mayer, R. H.

McAdams, M. S.

Nichols, M. G.

Ntziachristos, V.

V. Ntziachristos, R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2002).
[CrossRef]

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

Patterson, M. S.

Perelman, L.

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

J. Wu, Y. Wang, L. Perelman, R. Itzkan, R. R. Dasari, M. S. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).
[CrossRef] [PubMed]

Pogue, B. W.

Rajagopalan, R.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).
[CrossRef] [PubMed]

Reynolds, J. S.

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13, 669–680 (1997).
[CrossRef] [PubMed]

Roman, J. R.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Roy, R.

Sevick-Muraca, E. M.

A. B. Thompson, E. M. Sevick-Muraca, “NIR fluorescence contrast-enhanced imaging with ICCD homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8, 111–120 (2003).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef] [PubMed]

Z. Sun, Y. Huang, E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

A. Godavarty, D. J. Hawrysz, R. Roy, E. M. Sevick-Muraca, M. J. Eppstein, “Influence of the refractive index-mismatch at the boundaries measured in fluorescence-enhanced frequency-domain photon migration imaging,” Opt. Express 10, 653–662 (2002), http://www.opticsexpress.org .
[CrossRef]

J. Lee, E. M. Sevick-Muraca, “Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths,” J. Opt. Soc. Am. A 19, 759–771 (2002).
[CrossRef]

R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
[CrossRef]

D. J. Hawrysz, M. J. Eppstein, J. Lee, E. M. Sevick-Muraca, “Error consideration in contrast-enhanced three-dimensional optical tomography,” Opt. Lett. 26, 704–706 (2001).
[CrossRef]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
[CrossRef]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13, 669–680 (1997).
[CrossRef] [PubMed]

C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, R. Roy, “Near-infrared fluorescence imaging and spectroscopy in random media and tissues,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, Boca Raton, Fla., 2003).
[CrossRef]

Sun, Z.

Z. Sun, Y. Huang, E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

Svaasand, L. O.

Thompson, A. B.

A. B. Thompson, E. M. Sevick-Muraca, “NIR fluorescence contrast-enhanced imaging with ICCD homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8, 111–120 (2003).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, R. Roy, “Near-infrared fluorescence imaging and spectroscopy in random media and tissues,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, Boca Raton, Fla., 2003).
[CrossRef]

Tromberg, B. J.

Troy, T. L.

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
[CrossRef]

J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13, 669–680 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

Tsay, T. T.

Uetrecht, P.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).
[CrossRef] [PubMed]

Wang, Y.

Weissleder, R.

V. Ntziachristos, R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2002).
[CrossRef]

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

Wilson, B. C.

Wu, J.

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

J. Wu, Y. Wang, L. Perelman, R. Itzkan, R. R. Dasari, M. S. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).
[CrossRef] [PubMed]

Yodh, A. G.

Appl. Math. Comput. (1)

J. C. Adams, “mudpack: Multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

Appl. Opt. (10)

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef] [PubMed]

X. Li, B. Chance, A. G. Yodh, “Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6844 (1998).
[CrossRef]

R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
[CrossRef]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
[CrossRef]

E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–123 (1997).
[CrossRef] [PubMed]

Arch. Dermatol. (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef] [PubMed]

Biotechnol. Prog. (1)

J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13, 669–680 (1997).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Chernomordik, D. Hattery, I. Gannot, A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence—application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 5, 930–935 (1999).
[CrossRef]

J. Biomed. Opt. (1)

A. B. Thompson, E. M. Sevick-Muraca, “NIR fluorescence contrast-enhanced imaging with ICCD homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8, 111–120 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Med. Phys. (1)

V. Ntziachristos, R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Photochem. Photobiol. (2)

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Phys. Rev. E (1)

D. J. Durian, “Influence of boundary reflection and refraction on diffusive photon transport,” Phys. Rev. E 50, 857–866 (1994).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

Z. Sun, Y. Huang, E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383–393 (2002).
[CrossRef]

Other (2)

D. J. Hawrysz, “Bayesian approach to the inverse problem in contrast-enhanced, three dimensional, biomedical optical imaging using frequency domain photon migration,” Ph.D. dissertation (Purdue University, West Lafayette, Ind., 2001).

E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, R. Roy, “Near-infrared fluorescence imaging and spectroscopy in random media and tissues,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, Boca Raton, Fla., 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Tissue phantom representative of all tissue phantoms investigated.

Fig. 2
Fig. 2

Experimental setup employed for acquisition of fluorescence FDPM data. Numbered components include: 1, a Nikon 105-mm AF Nikkor lens; 2, an ITT Night Vision image intensifier; 3, a Kaiser 785-nm holographic band-rejection filter; 4, a Nikon 50-mm AF Nikkor lens; 5, an Andover 830-nm image quality bandpass interference filter.

Fig. 3
Fig. 3

Experimental setup employed for acquisition of excitation source FDPM data. Numbered components include 1, a Newport Polarcor near-infrared linear polarizer; 2, a Newport neutral density filter; 3, a Melles Griot near infrared linear polarizer.

Fig. 4
Fig. 4

Data, obtained from trial 1 of case 1 (see Table 1), illustrating how accurately fluorescence FDPM measurements were acquired from the tissue phantom in which only a 1-ml target immersed 1 cm deep contained a fluorescent agent. Images are (a) experimental, normalized fluorescence I AC; (b) predicted, normalized fluorescence I AC computed by use of incident excitation source information obtained by use of the polarizers; (c) relative error (%) between (a) and (b); (d) experimental, referenced fluorescence θ (°); (e) predicted, referenced fluorescence θ (°) computed by use of incident excitation source information obtained by use of the polarizers; (f) absolute error (°) between (d) and (e).

Fig. 5
Fig. 5

Data, obtained from trial 1 of case 2 (see Table 1), illustrating how accurately fluorescence FDPM measurements were acquired from the tissue phantom in which a 1-ml target immersed 1 cm deep and its background contained the same fluorescent agent and the TBRs of ϕμ a xf and τ were 100:1 and 1:1, respectively. Images are (a) experimental, normalized fluorescence I AC; (b) predicted, normalized fluorescence I AC computed by use of incident excitation source information obtained by use of the polarizers; (c) relative error (%) between (a) and (b); (d) experimental, referenced fluorescence θ (°); (e) predicted, referenced fluorescence θ (°) computed by use of incident excitation source information obtained by use of the polarizers; (f) absolute error (°) between (d) and (e).

Fig. 6
Fig. 6

Data, obtained from trial 1 of case 2 (see Table 1), illustrating how accurately fluorescence FDPM measurements were acquired from the tissue phantom in which a 1-ml target immersed 1 cm deep and its background contained the same fluorescent agent and the T:B ratios of ϕμ a xf and τ were 100:1 and 1:1, respectively. Images are (a) experimental, normalized fluorescence I AC; (b) predicted, normalized fluorescence I AC computed by use of incident excitation source information obtained without use of the polarizers; (c) relative error (%) between (a) and (b); (d) experimental, referenced fluorescence θ (°); (e) predicted, referenced fluorescence θ (°) computed by use of incident excitation source information obtained without use of the polarizers; (f) absolute error (°) between (d) and (e).

Fig. 7
Fig. 7

Experimental source FDPM data used to predict the fluorescence FDPM data. Images are (a) excitation I AC (a.u.) and (b) excitation θ (°) acquired by use of the polarizers and images of (c) excitation I AC (a.u.) and (d) excitation θ (°) acquired without the use of polarizers.

Fig. 8
Fig. 8

Data illustrating perturbations in fluorescence I AC caused by a 1-ml fluorescent target immersed 1 cm deep within a background that contained the same fluorescent agent. Rows (I), (II), and (III) show images obtained from trial 1 of cases 2, 3, and 4, respectively (see Table 1), for which the T:B ratios of ϕμ a xf were 100:1, 50:1, and 10:1, respectively, and the T:B ratios of τ were all 1:1. Column (a) shows experimental images of normalized fluorescence I AC acquired from the tissue phantoms. Column (b) shows predicted images of normalized fluorescence I AC computed for the same tissue phantoms with no target using incident excitation source information obtained by use of polarizers. Column (c) shows perturbation images that we computed by dividing the experimental images in column (a) by the predicted images in column (b).

Fig. 9
Fig. 9

Data illustrating perturbations in fluorescence θ caused by a 1-ml fluorescent target immersed 1 cm deep within a background that contained the same fluorescent agent. Rows (I), (II), and (III) show images obtained from trial 1 of cases 2, 3, and 4, respectively (see Table 1), for which the T:B ratios of ϕμ a xf were 100:1, 50:1, and 10:1, respectively, and the T:B ratios of τ were all 1:1. Column (a) shows experimental images of referenced fluorescence θ (°) acquired from the tissue phantoms. Column (b) shows predicted images of referenced fluorescence θ (°) computed for the same tissue phantoms with no target using incident excitation source information obtained by use of polarizers. Column (c) shows perturbation images that we computed by subtracting the predicted images in column (b) from the experimental images in column (a).

Fig. 10
Fig. 10

Data illustrating perturbations in fluorescence θ caused by a 1-ml fluorescent target immersed 1 cm deep within a background that contained a fluorescent agent whose lifetime was less than that of the target. Rows (I), (II), and (III) show images obtained from trial 1 of cases 5, 6, and 7, respectively (see Table 1), for which the T:B ratios of ϕμ a xf were 100:1, 50:1, and 10:1, respectively, and the TBRs of τ were all 2:1. Column (a) shows experimental images of referenced fluorescence θ (°) acquired from the tissue phantoms. Column (b) shows predicted images of referenced fluorescence θ (°) computed for the same tissue phantoms with no target using incident excitation source information obtained by use of polarizers. Column (c) shows perturbation images that we computed by subtracting the predicted images in column (b) from the experimental images in column (a).

Tables (4)

Tables Icon

Table 1 Specifications for the Tissue Phantoms

Tables Icon

Table 2 Optical Properties of Both the Target and the Background that Composed the Tissue Phantoms Listed in Table 1

Tables Icon

Table 3 Fluorescent Properties of the Target (tar) and Background (back) that Composed the Tissue Phantoms Listed in Table 1

Tables Icon

Table 4 Mean (±95% Confidence Interval) Error between All Experimental and Predicted Fluorescence FDPM Data

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

iωc+μaxrΦxr, ω- · DxrΦxr, ω=Φx0rs, ωδr-rs,
iωc+μamrΦmr, ω- · DmrΦmr, ω=ϕμaxfr1+iωτr1+ωτr2 Φxr, ω,
Dx,mr=3μax,mr+μsx,mr-1,
Φx,mr, ω=IACx,mr, ωexpiθx,mr, ω.

Metrics