Abstract

We have developed a whole-field fluorescence microscope equipped with a Digital Micromirror Device to acquire optically sectioned images by using the fringe-projection technique and the phase-shift method. This system allows free control of optical sectioning strength through computer-controlled alteration of the fringe period projected onto a sample. We have employed this system to image viable cells expressing fluorescent proteins and discussed its biological applications.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, Confocal Microscopy (Academic, New York, 1990).
  2. A. Sawano, H. Hama, N. Saito, A. Miyawaki, “Multicolor imaging of Ca2+ and protein kinase C signals using novel epifluorescence microscopy,” Biophys. J. 82, 1076–1085 (2002).
    [CrossRef]
  3. M. A. A. Neil, R. Juškaitis, T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
    [CrossRef]
  4. J. Siegel, D. E. Elson, S. E. D. Webb, D. Parsons-Karavassilis, S. Lévêque-Fort, M. J. Cole, M. J. Lever, P. M. W. French, M. A. A. Neil, R. Juškaitis, L. O. Sucharov, T. Wilson, “Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning,” Opt. Lett. 26, 1338–1340 (2001).
    [CrossRef]
  5. C.-H. Lee, H.-Y. Mong, W.-C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27, 1773–1775 (2002).
    [CrossRef]
  6. M. R. Douglass, I. S. MuMurray, “Why is the Texas Instruments digital micromirror device reliable?” http://www.dlp.com/dlp_technology/dlp_technology_white_papers.asp , 1997.
  7. N. A. Riza, S. Sumriddetchkajorn, “Fault-tolerant dense multiwavelength add-drop filter with a two-dimensional digital micromirror device,” Appl. Opt. 37, 6355–6361 (1998).
    [CrossRef]
  8. M. Liang, R. L. Stehr, A. W. Krause, “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination,” Opt. Lett. 22, 751–753 (1997).
    [CrossRef] [PubMed]
  9. Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
    [CrossRef] [PubMed]
  10. R. Juškaitis, T. Wilson, M. A. A. Neil, M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
    [CrossRef] [PubMed]
  11. T. Wilson, R. Juškaitis, M. A. A. Neil, M. Kozubek, “Confocal microscopy by aperture correlation,” Opt. Lett. 21, 1879–1881 (1996).
    [CrossRef] [PubMed]
  12. R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204, 119–137 (2001).
    [CrossRef] [PubMed]
  13. F. Vuille, R. Lehmann, K. Plamann, “Light efficiency vs. image acquisition time: considerations for parallel confocal microscopy applied to biological tissue observation,” Opt. Commun. 195, 361–369 (2001).
    [CrossRef]
  14. C. MacAulay, A. Dlugan, “Use of digital micromirror devices in quantitative microscopy,” in Optical Investigations of Cells in Vitro and in Vivo, D. L. Farkas, R. C. Leif, B. J. Tromberg, eds., Proc. SPIE3260, 201–206 (1998).
    [CrossRef]
  15. A. L. P. Dlugan, C. E. MacAulay, P. M. Lane, “Improvements to quantitative microscopy though the use of digital micromirror devices,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 6–11 (2000).
    [CrossRef]
  16. J. B. Sampsell, “An overview of the performance envelope of Digital Micromirror Device™ (DMD) based projection display systems,” in Digest of Technical Papers, Society for Information Display International Symposium (Society for Information Display, San Jose, Calif., 1994), pp. 669–672.
  17. L. J. Hornbeck, “Digital light processing: a new MEMS-based display technology,” in Technical Digest of the Institute of Electrical Engineers of Japan 14th Sensor Symposium (The Institute of Electrical Engineers of Japan, Tokyo, 1996), pp. 297–304.
  18. A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
    [CrossRef] [PubMed]
  19. M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
    [CrossRef] [PubMed]
  20. T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
    [CrossRef] [PubMed]
  21. K. Subramanian, T. Meyer, “Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores,” Cell 89, 963–971 (1997).
    [CrossRef] [PubMed]
  22. L. Leybaert, M. J. Sanderson, “Intercellular calcium signaling and flash photolysis of caged compounds,” in Connexin Methods and Protocols, R. Bruzzone, C. Giaume, eds., Vol. 154 of Methods in Molecular Biology (Humana, Totawa, N.J., 2000), pp. 407–430.
    [CrossRef]
  23. H. Tanaka, T. Kawanishi, T. Matsuda, M. Takahashi, K. Shigenobu, “Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscope,” J. Cardiovasc. Pharmacol. 27, 761–769 (1996).
    [CrossRef] [PubMed]

2002

A. Sawano, H. Hama, N. Saito, A. Miyawaki, “Multicolor imaging of Ca2+ and protein kinase C signals using novel epifluorescence microscopy,” Biophys. J. 82, 1076–1085 (2002).
[CrossRef]

C.-H. Lee, H.-Y. Mong, W.-C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27, 1773–1775 (2002).
[CrossRef]

2001

J. Siegel, D. E. Elson, S. E. D. Webb, D. Parsons-Karavassilis, S. Lévêque-Fort, M. J. Cole, M. J. Lever, P. M. W. French, M. A. A. Neil, R. Juškaitis, L. O. Sucharov, T. Wilson, “Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning,” Opt. Lett. 26, 1338–1340 (2001).
[CrossRef]

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204, 119–137 (2001).
[CrossRef] [PubMed]

F. Vuille, R. Lehmann, K. Plamann, “Light efficiency vs. image acquisition time: considerations for parallel confocal microscopy applied to biological tissue observation,” Opt. Commun. 195, 361–369 (2001).
[CrossRef]

T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
[CrossRef] [PubMed]

1999

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[CrossRef] [PubMed]

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[CrossRef] [PubMed]

1998

1997

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
[CrossRef] [PubMed]

K. Subramanian, T. Meyer, “Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores,” Cell 89, 963–971 (1997).
[CrossRef] [PubMed]

M. Liang, R. L. Stehr, A. W. Krause, “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination,” Opt. Lett. 22, 751–753 (1997).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
[CrossRef]

1996

H. Tanaka, T. Kawanishi, T. Matsuda, M. Takahashi, K. Shigenobu, “Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscope,” J. Cardiovasc. Pharmacol. 27, 761–769 (1996).
[CrossRef] [PubMed]

R. Juškaitis, T. Wilson, M. A. A. Neil, M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
[CrossRef] [PubMed]

T. Wilson, R. Juškaitis, M. A. A. Neil, M. Kozubek, “Confocal microscopy by aperture correlation,” Opt. Lett. 21, 1879–1881 (1996).
[CrossRef] [PubMed]

Adams, J. A.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
[CrossRef] [PubMed]

Arndt-Jovin, D.

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204, 119–137 (2001).
[CrossRef] [PubMed]

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[CrossRef] [PubMed]

Cole, M. J.

Dlugan, A.

C. MacAulay, A. Dlugan, “Use of digital micromirror devices in quantitative microscopy,” in Optical Investigations of Cells in Vitro and in Vivo, D. L. Farkas, R. C. Leif, B. J. Tromberg, eds., Proc. SPIE3260, 201–206 (1998).
[CrossRef]

Dlugan, A. L. P.

A. L. P. Dlugan, C. E. MacAulay, P. M. Lane, “Improvements to quantitative microscopy though the use of digital micromirror devices,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 6–11 (2000).
[CrossRef]

Elson, D. E.

Fradkov, A. F.

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[CrossRef] [PubMed]

French, P. M. W.

Gemkow, M. J.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[CrossRef] [PubMed]

Hama, H.

A. Sawano, H. Hama, N. Saito, A. Miyawaki, “Multicolor imaging of Ca2+ and protein kinase C signals using novel epifluorescence microscopy,” Biophys. J. 82, 1076–1085 (2002).
[CrossRef]

Hanley, Q. S.

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204, 119–137 (2001).
[CrossRef] [PubMed]

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[CrossRef] [PubMed]

Heim, R.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
[CrossRef] [PubMed]

Heintzmann, R.

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204, 119–137 (2001).
[CrossRef] [PubMed]

Hornbeck, L. J.

L. J. Hornbeck, “Digital light processing: a new MEMS-based display technology,” in Technical Digest of the Institute of Electrical Engineers of Japan 14th Sensor Symposium (The Institute of Electrical Engineers of Japan, Tokyo, 1996), pp. 297–304.

Iino, M.

T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
[CrossRef] [PubMed]

Ikura, M.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
[CrossRef] [PubMed]

Ito, K.

T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
[CrossRef] [PubMed]

Jovin, T. M.

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204, 119–137 (2001).
[CrossRef] [PubMed]

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[CrossRef] [PubMed]

Juškaitis, R.

Kasai, H.

T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
[CrossRef] [PubMed]

Kawanishi, T.

H. Tanaka, T. Kawanishi, T. Matsuda, M. Takahashi, K. Shigenobu, “Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscope,” J. Cardiovasc. Pharmacol. 27, 761–769 (1996).
[CrossRef] [PubMed]

Kimura, R.

T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
[CrossRef] [PubMed]

Kozubek, M.

R. Juškaitis, T. Wilson, M. A. A. Neil, M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
[CrossRef] [PubMed]

T. Wilson, R. Juškaitis, M. A. A. Neil, M. Kozubek, “Confocal microscopy by aperture correlation,” Opt. Lett. 21, 1879–1881 (1996).
[CrossRef] [PubMed]

Krause, A. W.

Labas, Y. A.

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[CrossRef] [PubMed]

Lane, P. M.

A. L. P. Dlugan, C. E. MacAulay, P. M. Lane, “Improvements to quantitative microscopy though the use of digital micromirror devices,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 6–11 (2000).
[CrossRef]

Lee, C.-H.

Lehmann, R.

F. Vuille, R. Lehmann, K. Plamann, “Light efficiency vs. image acquisition time: considerations for parallel confocal microscopy applied to biological tissue observation,” Opt. Commun. 195, 361–369 (2001).
[CrossRef]

Lévêque-Fort, S.

Lever, M. J.

Leybaert, L.

L. Leybaert, M. J. Sanderson, “Intercellular calcium signaling and flash photolysis of caged compounds,” in Connexin Methods and Protocols, R. Bruzzone, C. Giaume, eds., Vol. 154 of Methods in Molecular Biology (Humana, Totawa, N.J., 2000), pp. 407–430.
[CrossRef]

Liang, M.

Lin, W.-C.

Llopis, J.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
[CrossRef] [PubMed]

Lukyanov, S. A.

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[CrossRef] [PubMed]

MacAulay, C.

C. MacAulay, A. Dlugan, “Use of digital micromirror devices in quantitative microscopy,” in Optical Investigations of Cells in Vitro and in Vivo, D. L. Farkas, R. C. Leif, B. J. Tromberg, eds., Proc. SPIE3260, 201–206 (1998).
[CrossRef]

MacAulay, C. E.

A. L. P. Dlugan, C. E. MacAulay, P. M. Lane, “Improvements to quantitative microscopy though the use of digital micromirror devices,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 6–11 (2000).
[CrossRef]

Markelov, M. L.

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[CrossRef] [PubMed]

Matsuda, T.

H. Tanaka, T. Kawanishi, T. Matsuda, M. Takahashi, K. Shigenobu, “Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscope,” J. Cardiovasc. Pharmacol. 27, 761–769 (1996).
[CrossRef] [PubMed]

Matz, M. V.

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[CrossRef] [PubMed]

McCaffery, J. M.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
[CrossRef] [PubMed]

Meyer, T.

K. Subramanian, T. Meyer, “Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores,” Cell 89, 963–971 (1997).
[CrossRef] [PubMed]

Miyashita, Y.

T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
[CrossRef] [PubMed]

Miyawaki, A.

A. Sawano, H. Hama, N. Saito, A. Miyawaki, “Multicolor imaging of Ca2+ and protein kinase C signals using novel epifluorescence microscopy,” Biophys. J. 82, 1076–1085 (2002).
[CrossRef]

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
[CrossRef] [PubMed]

Mong, H.-Y.

Neil, M. A. A.

Nemoto, T.

T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
[CrossRef] [PubMed]

Parsons-Karavassilis, D.

Plamann, K.

F. Vuille, R. Lehmann, K. Plamann, “Light efficiency vs. image acquisition time: considerations for parallel confocal microscopy applied to biological tissue observation,” Opt. Commun. 195, 361–369 (2001).
[CrossRef]

Riza, N. A.

Saito, N.

A. Sawano, H. Hama, N. Saito, A. Miyawaki, “Multicolor imaging of Ca2+ and protein kinase C signals using novel epifluorescence microscopy,” Biophys. J. 82, 1076–1085 (2002).
[CrossRef]

Sampsell, J. B.

J. B. Sampsell, “An overview of the performance envelope of Digital Micromirror Device™ (DMD) based projection display systems,” in Digest of Technical Papers, Society for Information Display International Symposium (Society for Information Display, San Jose, Calif., 1994), pp. 669–672.

Sanderson, M. J.

L. Leybaert, M. J. Sanderson, “Intercellular calcium signaling and flash photolysis of caged compounds,” in Connexin Methods and Protocols, R. Bruzzone, C. Giaume, eds., Vol. 154 of Methods in Molecular Biology (Humana, Totawa, N.J., 2000), pp. 407–430.
[CrossRef]

Savitsky, A. P.

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[CrossRef] [PubMed]

Sawano, A.

A. Sawano, H. Hama, N. Saito, A. Miyawaki, “Multicolor imaging of Ca2+ and protein kinase C signals using novel epifluorescence microscopy,” Biophys. J. 82, 1076–1085 (2002).
[CrossRef]

Shigenobu, K.

H. Tanaka, T. Kawanishi, T. Matsuda, M. Takahashi, K. Shigenobu, “Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscope,” J. Cardiovasc. Pharmacol. 27, 761–769 (1996).
[CrossRef] [PubMed]

Siegel, J.

Stehr, R. L.

Subramanian, K.

K. Subramanian, T. Meyer, “Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores,” Cell 89, 963–971 (1997).
[CrossRef] [PubMed]

Sucharov, L. O.

Sumriddetchkajorn, S.

Tachikawa, A.

T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
[CrossRef] [PubMed]

Takahashi, M.

H. Tanaka, T. Kawanishi, T. Matsuda, M. Takahashi, K. Shigenobu, “Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscope,” J. Cardiovasc. Pharmacol. 27, 761–769 (1996).
[CrossRef] [PubMed]

Tanaka, H.

H. Tanaka, T. Kawanishi, T. Matsuda, M. Takahashi, K. Shigenobu, “Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscope,” J. Cardiovasc. Pharmacol. 27, 761–769 (1996).
[CrossRef] [PubMed]

Tsien, R. Y.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
[CrossRef] [PubMed]

Verveer, P. J.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[CrossRef] [PubMed]

Vuille, F.

F. Vuille, R. Lehmann, K. Plamann, “Light efficiency vs. image acquisition time: considerations for parallel confocal microscopy applied to biological tissue observation,” Opt. Commun. 195, 361–369 (2001).
[CrossRef]

Webb, S. E. D.

Wilson, T.

Zaraisky, A. G.

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

A. Sawano, H. Hama, N. Saito, A. Miyawaki, “Multicolor imaging of Ca2+ and protein kinase C signals using novel epifluorescence microscopy,” Biophys. J. 82, 1076–1085 (2002).
[CrossRef]

Cell

K. Subramanian, T. Meyer, “Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores,” Cell 89, 963–971 (1997).
[CrossRef] [PubMed]

J. Cardiovasc. Pharmacol.

H. Tanaka, T. Kawanishi, T. Matsuda, M. Takahashi, K. Shigenobu, “Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscope,” J. Cardiovasc. Pharmacol. 27, 761–769 (1996).
[CrossRef] [PubMed]

J. Microsc.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[CrossRef] [PubMed]

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204, 119–137 (2001).
[CrossRef] [PubMed]

Nat. Biotechnol.

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[CrossRef] [PubMed]

Nat. Cell Biol.

T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
[CrossRef] [PubMed]

Nature

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
[CrossRef] [PubMed]

R. Juškaitis, T. Wilson, M. A. A. Neil, M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
[CrossRef] [PubMed]

Opt. Commun.

F. Vuille, R. Lehmann, K. Plamann, “Light efficiency vs. image acquisition time: considerations for parallel confocal microscopy applied to biological tissue observation,” Opt. Commun. 195, 361–369 (2001).
[CrossRef]

Opt. Lett.

Other

L. Leybaert, M. J. Sanderson, “Intercellular calcium signaling and flash photolysis of caged compounds,” in Connexin Methods and Protocols, R. Bruzzone, C. Giaume, eds., Vol. 154 of Methods in Molecular Biology (Humana, Totawa, N.J., 2000), pp. 407–430.
[CrossRef]

T. Wilson, Confocal Microscopy (Academic, New York, 1990).

C. MacAulay, A. Dlugan, “Use of digital micromirror devices in quantitative microscopy,” in Optical Investigations of Cells in Vitro and in Vivo, D. L. Farkas, R. C. Leif, B. J. Tromberg, eds., Proc. SPIE3260, 201–206 (1998).
[CrossRef]

A. L. P. Dlugan, C. E. MacAulay, P. M. Lane, “Improvements to quantitative microscopy though the use of digital micromirror devices,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 6–11 (2000).
[CrossRef]

J. B. Sampsell, “An overview of the performance envelope of Digital Micromirror Device™ (DMD) based projection display systems,” in Digest of Technical Papers, Society for Information Display International Symposium (Society for Information Display, San Jose, Calif., 1994), pp. 669–672.

L. J. Hornbeck, “Digital light processing: a new MEMS-based display technology,” in Technical Digest of the Institute of Electrical Engineers of Japan 14th Sensor Symposium (The Institute of Electrical Engineers of Japan, Tokyo, 1996), pp. 297–304.

M. R. Douglass, I. S. MuMurray, “Why is the Texas Instruments digital micromirror device reliable?” http://www.dlp.com/dlp_technology/dlp_technology_white_papers.asp , 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the optical configuration. F, frost-glass plate; L, lens; M, mirror; DMD, digital micromirror device; EX, excitation filter; DM, dichroic mirror; OL, objective lens; EM, emission filter. The focal lengths of lenses L1, L2, and L3 were 90, 200, and 180 mm, respectively.

Fig. 2
Fig. 2

Axial responses at various fringe periods for a fluorescence thin film. Fringe periods are 8 (circles), 16 (squares), and 32 (diamonds) micromirrors on the DMD chip.

Fig. 3
Fig. 3

Dependence of the FWHM (circles) and the relative peak intensity (squares) of the axial response on the fringe period. The theoretical relationship between the FWHM and the fringe period is shown by a solid line.

Fig. 4
Fig. 4

Microscopic images of HeLa cells expressing a fluorescent indicator, cameleon, for Ca2+ in the cytosol. (a)–(c) Phase-shifted images with phase shifts of 0, π/2, and π, respectively. (d) Optical sectioned image. (e) Corresponding conventional image. Scale bar, 20 μm.

Fig. 5
Fig. 5

Images of Cos-7 cells expressing enhanced GFP. (a) Conventional image. (b)–(d) Phase-shifted images with fringe periods of 4, 8, and 16 micromirrors on the DMD, respectively. (e)–(g) Corresponding optical sectioned images. Scale bar, 20 μm.

Fig. 6
Fig. 6

Spatially split image of a rat hippocampal neuron showing GFP with different optical sectioning strengths. (a) Conventional image. (b) Modulated image whose fringe periods were 8 (right) and 32 (left). The border is indicated by up and down arrows. (c) Calculated optical sectioned image. (d) A schematic drawing of the cross section of a neuron. The shaded area shows the observed section. Scale bar, 20 μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I0x, y=Bx, y+Ax, y1+cos2πνx,
Iπ/2x, y=Bx, y+Ax, y1+cos2πνx+π2.
Iπx, y=Bx, y+Ax, y1+cos2πνx+π.
Iosx, y=12I0x, y-Iπ/2x, y2+Iπ/2x, y-Iπx, y21/2.
Icvx, y=I0x, y+Iπx, y2.
Iu2 J12uγ1-γ/22uγ1-γ/2,
u=8πnλ z sin2α/2,
γ=gλn sin α,

Metrics