Abstract

We report the experimental results of the simultaneous reconstruction of absorption and scattering coefficient maps with ultrasound localization. Near-infrared (NIR) data were obtained from frequency domain and dc systems with source and detector fibers configured in transmission geometry. High- or low-contrast targets located close to either the boundary or the center of the turbid medium were reconstructed by using NIR data only and NIR data with ultrasound localization. Results show that the mean reconstructed absorption coefficient and the spatial distribution of the absorption map have been improved significantly with ultrasound localization. The improvements in the mean scattering coefficient and the spatial distribution of the scattering coefficient are moderate. When both the absorption and the scattering coefficients are reconstructed the performance of the frequency-domain system is much better than that of the dc system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
    [CrossRef]
  2. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in human subject,” Appl. Opt. 36, 10–20 (1997).
    [CrossRef] [PubMed]
  3. S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, K. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  4. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
    [CrossRef] [PubMed]
  5. B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
    [PubMed]
  6. B. Chance, J. Glickson, R. Weissleder, C. Tung, D. Blessington, L. Zhou, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Digest of Topical Meeting on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America, Washington, D.C., 2002), pp. 450–455.
  7. E. M. Sevick, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
    [CrossRef]
  8. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
    [CrossRef]
  9. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
    [CrossRef]
  10. X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1998).
    [CrossRef]
  11. Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–341 (1997).
    [CrossRef]
  12. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).
  13. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
    [CrossRef]
  14. K. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  15. S. Arridge, M. Schweiger, “Photon-measurement density functions. Part II: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  16. Q. Zhu, T. Dunrana, M. Holboke, V. Ntziachristos, A. Yodh, “Imager that combines near infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
    [CrossRef]
  17. Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
    [CrossRef] [PubMed]
  18. N. G. Chen, P. Y. Guo, S. K. Yan, D. Q. Piao, Q. Zhu, “Simultaneous near-infrared diffusive light and ultrasound imaging,” Appl. Opt. 40, 6367–6380 (2001).
    [CrossRef]
  19. N. G. Chen, Q. Zhu, “Characterization of small absorbers inside the turbid medium,” Opt. Lett. 27, 252–254 (2002).
    [CrossRef]
  20. Q. Zhu, N. G. Chen, S. Kurtzman, “Imaging tumor angiogenesis using combined near-infrared diffusive light and ultrasound,” Opt. Lett. 38, 337–339 (2003).
    [CrossRef]
  21. N. G. Chen, J. Bai, “Monte Carlo approach to modeling of boundary conditions for the diffusion equation,” Phys. Rev. Lett. 80, 5321–5324 (1998).
    [CrossRef]
  22. Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on the stability of derived information for dc optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
    [CrossRef]
  23. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
    [CrossRef]
  24. M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
    [CrossRef]
  25. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef] [PubMed]

2003

Q. Zhu, N. G. Chen, S. Kurtzman, “Imaging tumor angiogenesis using combined near-infrared diffusive light and ultrasound,” Opt. Lett. 38, 337–339 (2003).
[CrossRef]

2002

2001

Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on the stability of derived information for dc optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
[CrossRef]

N. G. Chen, P. Y. Guo, S. K. Yan, D. Q. Piao, Q. Zhu, “Simultaneous near-infrared diffusive light and ultrasound imaging,” Appl. Opt. 40, 6367–6380 (2001).
[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

2000

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
[CrossRef]

1999

1998

1997

1995

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

S. Arridge, M. Schweiger, “Photon-measurement density functions. Part II: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

K. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Anderson, E. R.

Arridge, S.

Arridge, S. R.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

Bai, J.

N. G. Chen, J. Bai, “Monte Carlo approach to modeling of boundary conditions for the diffusion equation,” Phys. Rev. Lett. 80, 5321–5324 (1998).
[CrossRef]

Barbour, R. L.

Blessington, D.

B. Chance, J. Glickson, R. Weissleder, C. Tung, D. Blessington, L. Zhou, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Digest of Topical Meeting on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America, Washington, D.C., 2002), pp. 450–455.

Boas, D. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Brenner, M.

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Butler, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

Cerussi, A.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

Chance, B.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1998).
[CrossRef]

B. Chance, J. Glickson, R. Weissleder, C. Tung, D. Blessington, L. Zhou, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Digest of Topical Meeting on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America, Washington, D.C., 2002), pp. 450–455.

Chen, N. G.

Q. Zhu, N. G. Chen, S. Kurtzman, “Imaging tumor angiogenesis using combined near-infrared diffusive light and ultrasound,” Opt. Lett. 38, 337–339 (2003).
[CrossRef]

N. G. Chen, Q. Zhu, “Characterization of small absorbers inside the turbid medium,” Opt. Lett. 27, 252–254 (2002).
[CrossRef]

N. G. Chen, P. Y. Guo, S. K. Yan, D. Q. Piao, Q. Zhu, “Simultaneous near-infrared diffusive light and ultrasound imaging,” Appl. Opt. 40, 6367–6380 (2001).
[CrossRef]

N. G. Chen, J. Bai, “Monte Carlo approach to modeling of boundary conditions for the diffusion equation,” Phys. Rev. Lett. 80, 5321–5324 (1998).
[CrossRef]

Conant, E.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

Constantinescu, A.

Coquoz, O.

Danen, R. M.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Dehghani, H.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Delpy, D. T.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Dunrana, T.

Durduran, T.

Espinoza, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

Fantini, S.

Firbank, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Fishkin, J. B.

Franceschini, M.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Glickson, J.

B. Chance, J. Glickson, R. Weissleder, C. Tung, D. Blessington, L. Zhou, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Digest of Topical Meeting on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America, Washington, D.C., 2002), pp. 450–455.

Graber, H. L.

Guo, P. Y.

Hebden, J. C.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Holboke, M.

Hutchinson, C. L.

E. M. Sevick, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef]

Jiang, H.

H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
[CrossRef]

K. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Jiang, X.

Kaschke, M.

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Kurtzman, S.

Q. Zhu, N. G. Chen, S. Kurtzman, “Imaging tumor angiogenesis using combined near-infrared diffusive light and ultrasound,” Opt. Lett. 38, 337–339 (2003).
[CrossRef]

Lanning, R.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

Li, X.

Li, X. D.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Liu, H.

Lopez, G.

E. M. Sevick, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef]

Mason, R. P.

McBride, T. O.

B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Moesta, K.

Ntziachristos, V.

O’Leary, M. A.

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).

Oda, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Osterberg, U.

B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Osterman, K. S.

B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Pattanayak, D. N.

Paulsen, K.

K. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Paulsen, K. D.

B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Pei, Y.

Pham, T.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

Piao, D. Q.

Pogue, B.

B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Poplack, S. P.

B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Reynolds, J. S.

E. M. Sevick, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef]

Schlag, P.

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. Arridge, M. Schweiger, “Photon-measurement density functions. Part II: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

Sevick, E. M.

E. M. Sevick, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef]

Shah, N.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

Song, Y.

Svaasand, L.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

Thayer, W. S.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Tromberg, B.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

Tromberg, B. J.

Troy, T. L.

E. M. Sevick, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef]

Tung, C.

B. Chance, J. Glickson, R. Weissleder, C. Tung, D. Blessington, L. Zhou, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Digest of Topical Meeting on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America, Washington, D.C., 2002), pp. 450–455.

Walker, S.

Wang, Y.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–341 (1997).
[CrossRef]

Weissleder, R.

B. Chance, J. Glickson, R. Weissleder, C. Tung, D. Blessington, L. Zhou, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Digest of Topical Meeting on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America, Washington, D.C., 2002), pp. 450–455.

Wells, W. A.

B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Worden, K. L.

Yan, S. K.

Yao, Y.

Yodh, A.

Yodh, A. G.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Zhou, L.

B. Chance, J. Glickson, R. Weissleder, C. Tung, D. Blessington, L. Zhou, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Digest of Topical Meeting on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America, Washington, D.C., 2002), pp. 450–455.

Zhu, Q.

Zhu, W.

Appl. Opt.

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, K. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
[CrossRef]

H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
[CrossRef]

N. G. Chen, P. Y. Guo, S. K. Yan, D. Q. Piao, Q. Zhu, “Simultaneous near-infrared diffusive light and ultrasound imaging,” Appl. Opt. 40, 6367–6380 (2001).
[CrossRef]

S. Arridge, M. Schweiger, “Photon-measurement density functions. Part II: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on the stability of derived information for dc optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
[CrossRef]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

IEEE Signal Process. Mag.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

J. Biomed. Opt.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Med. Phys.

K. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Neoplasia

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1:2), 26–40 (2000).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

E. M. Sevick, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef]

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

N. G. Chen, J. Bai, “Monte Carlo approach to modeling of boundary conditions for the diffusion equation,” Phys. Rev. Lett. 80, 5321–5324 (1998).
[CrossRef]

Radiology

B. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Rev. Sci. Instrum.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and data type extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Other

B. Chance, J. Glickson, R. Weissleder, C. Tung, D. Blessington, L. Zhou, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Digest of Topical Meeting on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America, Washington, D.C., 2002), pp. 450–455.

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Two-dimensional mesh used for NIR image geometry.

Fig. 2
Fig. 2

Schematic of our new dc system: AO, analog output; AI, analog input; DO, digital output; DI, digital input.

Fig. 3
Fig. 3

Experimental setup. A commercial ultrasound probe is located at the top of a water tank, and the NIR source and detector fibers are deployed around the tank and configured in transmission geometry.

Fig. 4
Fig. 4

Configurations of NIR sources and detectors used in the reported experiments: (a) frequency-domain experiments, (b) dc experiments, (c) top view of target rotation scheme used in frequency-domain measurements.

Fig. 5
Fig. 5

Comparisons of simultaneously reconstructed absorption and diffusion coefficient maps of a high-contrast target located at the center of the turbid medium: (a), (b) reconstructed μ a and D distributions when NIR data only are used; (c), (d), reconstructed μ a and D distributions with ultrasound localization; (e) coregistered ultrasound C-scan image used to guide the NIR reconstruction. X and Y are the spatial dimensions in centemeters.

Fig. 6
Fig. 6

Comparisons of simultaneously reconstructed absorption and diffusion coefficient maps of a high-contrast target located closer to the boundary of the turbid medium: (a), (b) reconstructed μ a and D distributions when NIR data only are used; (c), (d), reconstructed μ a and D distributions with ultrasound localization; (e) coregistered ultrasound C-scan image used to guide the NIR reconstruction.

Fig. 7
Fig. 7

Comparisons of simultaneously reconstructed absorption and diffusion coefficient maps of a low-contrast target located closer to the boundary: (a), (b) simultaneously reconstructed μ a and D distributions when NIR data only are used; (c), (d), simultaneously reconstructed μ a and D distributions with ultrasound localization.

Fig. 8
Fig. 8

Comparisons of simultaneously reconstructed absorption and diffusion maps of the same low-contrast target located at the center of the turbid medium: (a), (b), reconstructed μ a and D distributions when NIR data only are used; (c), (d), reconstructed μ a and D distributions with ultrasound localization.

Fig. 9
Fig. 9

Comparisons of simultaneously reconstructed absorption and diffusion maps of a high-contrast target located at the center of the medium. The dc system of the configuration in Fig. 4(b) was used for the experiments: (a), (b), reconstructed μ a and D distributions when NIR data only are used; (c), (d), reconstructed μ a and D distributions with ultrasound localization; (e) coregistered C-scan ultrasound image used to guide the NIR reconstruction.

Fig. 10
Fig. 10

Comparisons of simultaneously reconstructed absorption and diffusion coefficient maps of a low-contrast target located at the center of the medium: (a), (b), reconstructed μ a and D distributions, respectively, when NIR data only are used; (c) (d), reconstructed μ a and D distributions, respectively, with ultrasound localization.

Tables (2)

Tables Icon

Table 1 Experimental Results from the Frequency-Domain System

Tables Icon

Table 2 Experimental Results from the dc System

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

daUr¯t-·c·Ur¯+αUr¯γ+aUr¯+βUr¯=fr¯in Ω,
nˆ·cUr¯+αUr¯γ+qUr¯=gr¯on boundary Ω.
1vϕr¯, tt-·Dr¯·ϕr¯, t+μaϕr¯, t=S0r¯, t,
nˆ·Dr¯·ϕr¯, t+qϕr¯, t=0.
·Dr¯·ϕr¯-μaϕr¯=-S0r¯.
·Dr¯·ϕr¯, ω-μa-iωvϕr¯, ω=-S0r¯, ω.
Wij=ΔϕijΔμaj, ΔϕijΔDj,
Wij=Δϕ11Δμa1Δϕ1LΔμaLΔϕ11ΔD1Δϕ1LΔDLΔϕ21Δμa1Δϕ2LΔμaLΔϕ21ΔD1Δϕ2LΔDLΔϕM1Δμa1ΔϕMLΔμaLΔϕM1ΔD1ΔϕMLΔDL,
ϕmi-ϕmriϕmri ϕcri=Wij·Δμaji, ΔDji,
Fii·ϕmi-ϕmriϕmri ϕcri=Fii·Wij·Gjj·ΔXji,
Fii=1Nk=1N Wik-1, i=1, 2,, M Fij=0 when ij, Gjj=1Mk=1M Wkj-1,j=1, 2,, L Gij=0 when ij.
F·W·G·ΔX-F·ϕmi-ϕmriϕmri ϕcri2
-jρω2ν1/Dμa1/2,

Metrics