Abstract

Fluorescence emission and excitation spectra were measured over a 7-day period for Bacillus subtilis (Bs), a spore-forming, and Staphylococcus aureus (Sa), a nonspore-forming bacteria subjected to conditions of starvation. Initially, the Bs fluorescence was predominantly due to the amino acid tryptophan. Later, a fluorescence band with an emission peak at 410 nm and excitation peak at 345 nm, from dipicolinic acid, appeared. Dipicolinic acid is produced during spore formation and serves as a spectral signature for detection of spores. The intensity of the 410-nm band continued to increase over the next 3 days. The Sa fluorescence was predominantly from tryptophan and did not change over time. In 6 of the 17 Bs specimens studied, an additional band appeared with a weak emission peak at 460 nm and excitation peaks at 250, 270, and 400 nm. The addition of β-hydroxybutyric acid to the Bs or the Sa cultures resulted in a two-order of magnitude increase in the 460-nm emission. The addition of Fe2+ quenched the 460 emission, indicating that a source of the 460-nm emission was a siderophore produced by the bacteria. We demonstrate that optical spectroscopy-based instrumentation can detect bacterial spores in real time.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, R. R. Alfano, “Spectroscopic properties of tryptophan and bacteria,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE2387, 169–172 (1995).
    [CrossRef]
  2. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, D. Psaras, J. F. Tanguay, S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86–90 (1986).
    [CrossRef]
  3. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, “The steady-state and decay characteristics of primary fluoresence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987).
    [CrossRef]
  4. J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104(3 Pt 1), 264–268 (1994).
  5. M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
    [CrossRef] [PubMed]
  6. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol. Sci. Technol. 30, 174–185 (1999).
    [CrossRef]
  7. A. Driks, “Overview: development in bacteria: spore formation in Bacillus subtilis,” Cell Mol. Life Sci. 59, 389–391 (2002).
    [CrossRef] [PubMed]
  8. W. L. Nicholson, “Roles of Bacillus endospores in the environment,” Cell Mol. Life Sci. 59, 410–416 (2002).
    [CrossRef] [PubMed]
  9. A. Moir, B. M. Corfe, J. Behravan, “Spore germination,” Cell Mol. Life Sci. 59, 403–409 (2002).
    [CrossRef] [PubMed]
  10. M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinic acid,” J. Bacteriol. 182, 5505–5512 (2000).
    [CrossRef] [PubMed]
  11. B. Setlow, E. Melly, P. Setlow, “Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination,” J. Bacteriol. 183, 4894–4899 (2001).
    [CrossRef] [PubMed]
  12. T. A. Slieman, W. L. Nicholson, “Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation,” Appl. Environ. Microbiol. 67, 1274–1279 (2001).
    [CrossRef] [PubMed]
  13. M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Goodheart, Fundamentals of Microbiology, 9th ed. (W. B. Saunders, Philadelphia, 1974).
  14. A. D. Wrath, “Determination of dipicolinic acid in bacterial spores by derviative spectroscopy,” Anal. Biochem. 130, 502–505 (1983).
    [CrossRef]
  15. R. Nudelman, B. V. Bronk, S. Efrima, “Fluorescence emission derived from dipicolonic acid, its sodium and calcium salts,” Appl. Spectrosc. 54, 445–449 (2000).
    [CrossRef]
  16. T. D. Barela, A. D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
    [CrossRef] [PubMed]
  17. L. E. Sacks, “Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine,” Appl. Environ. Microbiol. 56, 1185–1187 (1990).
    [PubMed]
  18. D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
    [CrossRef]
  19. P. M. Pellegrino, N. F. Fell, D. L. Rosen, J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755–1760 (1997).
    [CrossRef]
  20. D. L. Rosen, “Wavelength pair selection for bacterial enodspore detection by use of terbium dipicolinate photoluminescence,” Appl. Opt. 37, 805–807 (1998).
    [CrossRef]
  21. A. A. Hindle, E. A. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst 124, 1599–1604 (1999).
    [CrossRef]
  22. N. F. Fell, P. M. Pellegrino, J. B. Gillespie, “Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence,” Anal. Chim. Acta 426, 43–50 (2001).
    [CrossRef]
  23. A. Katz, H. E. Savage, S. P. Schantz, S. A. McCormick, R. R. Alfano, “Noninvasive native fluorescence imaging of head and neck tumors,” Technology in Cancer Research and Treatment 1, 9–16 (2002).
  24. A. J. Anderson, G. W. Haywood, E. A. Dawes, “Biosynthesis and composition of bacterial poly(hydroxyalkanoates),” Int. J. Biol. Macromol. 12, 102–105 (1990).
    [CrossRef] [PubMed]
  25. J. R. Telford, K. N. Raymond, “Amonabactin: a family of novel siderophores from a pathogenic bacterum,” J. Biol. Inorg. Chem. 2, 750–761 (1997).
    [CrossRef]
  26. I. Weinryb, R. F. Steiner, “The luminescence of the aromatic amino acids,” in Excited States of Proteins and Nucleic Acids, I. Weinryb, R. F. Steiner, eds. (Plenum, New York, 1971), pp. 277–319.
    [CrossRef]
  27. M. O. Clements, S. J. Foster, “Starvation recovery of Staphylococcus aureus 8325-4,” Microbiology 144(Pt 7), 1755–1763 (1998).
    [CrossRef]
  28. S. P. Watson, M. Antonio, S. J. Foster, “Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery,” Microbiology 144(Pt 11), 3159–3169 (1998).
    [CrossRef]
  29. S. P. Watson, M. O. Clements, S. J. Foster, “Characterization of the starvation-survival response of Staphylococcus aureus,” J. Bacteriol. 180, 1750–1758 (1998).
    [PubMed]
  30. N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann, “Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors,” Mol. Microbiol. 29, 189–198 (1998).
    [CrossRef] [PubMed]
  31. A. Xiong, V. K. Singh, G. Cabrera, R. K. Jayaswal, “Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus,” Microbiology 146(Pt 3), 659–668 (2000).
  32. S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy,” J. Biol. Chem. 257, 8086–8090 (1982).
    [PubMed]
  33. S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. I. Isolation and characterization,” J. Biol. Chem. 257, 8081–8085 (1982).
    [PubMed]
  34. B. Oudega, M. Vandenbol, G. Koningstein, “A 12 kb nucleotide sequence containing the alanine dehydrogenase gene at 279 degrees on the Bacillus subtilis chromosome,” Microbiology 143(Pt 5), 1489–1491 (1997).
    [CrossRef]

2002 (4)

A. Driks, “Overview: development in bacteria: spore formation in Bacillus subtilis,” Cell Mol. Life Sci. 59, 389–391 (2002).
[CrossRef] [PubMed]

W. L. Nicholson, “Roles of Bacillus endospores in the environment,” Cell Mol. Life Sci. 59, 410–416 (2002).
[CrossRef] [PubMed]

A. Moir, B. M. Corfe, J. Behravan, “Spore germination,” Cell Mol. Life Sci. 59, 403–409 (2002).
[CrossRef] [PubMed]

A. Katz, H. E. Savage, S. P. Schantz, S. A. McCormick, R. R. Alfano, “Noninvasive native fluorescence imaging of head and neck tumors,” Technology in Cancer Research and Treatment 1, 9–16 (2002).

2001 (3)

B. Setlow, E. Melly, P. Setlow, “Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination,” J. Bacteriol. 183, 4894–4899 (2001).
[CrossRef] [PubMed]

T. A. Slieman, W. L. Nicholson, “Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation,” Appl. Environ. Microbiol. 67, 1274–1279 (2001).
[CrossRef] [PubMed]

N. F. Fell, P. M. Pellegrino, J. B. Gillespie, “Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence,” Anal. Chim. Acta 426, 43–50 (2001).
[CrossRef]

2000 (3)

A. Xiong, V. K. Singh, G. Cabrera, R. K. Jayaswal, “Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus,” Microbiology 146(Pt 3), 659–668 (2000).

R. Nudelman, B. V. Bronk, S. Efrima, “Fluorescence emission derived from dipicolonic acid, its sodium and calcium salts,” Appl. Spectrosc. 54, 445–449 (2000).
[CrossRef]

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinic acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

1999 (2)

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol. Sci. Technol. 30, 174–185 (1999).
[CrossRef]

A. A. Hindle, E. A. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst 124, 1599–1604 (1999).
[CrossRef]

1998 (5)

M. O. Clements, S. J. Foster, “Starvation recovery of Staphylococcus aureus 8325-4,” Microbiology 144(Pt 7), 1755–1763 (1998).
[CrossRef]

S. P. Watson, M. Antonio, S. J. Foster, “Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery,” Microbiology 144(Pt 11), 3159–3169 (1998).
[CrossRef]

S. P. Watson, M. O. Clements, S. J. Foster, “Characterization of the starvation-survival response of Staphylococcus aureus,” J. Bacteriol. 180, 1750–1758 (1998).
[PubMed]

N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann, “Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors,” Mol. Microbiol. 29, 189–198 (1998).
[CrossRef] [PubMed]

D. L. Rosen, “Wavelength pair selection for bacterial enodspore detection by use of terbium dipicolinate photoluminescence,” Appl. Opt. 37, 805–807 (1998).
[CrossRef]

1997 (4)

J. R. Telford, K. N. Raymond, “Amonabactin: a family of novel siderophores from a pathogenic bacterum,” J. Biol. Inorg. Chem. 2, 750–761 (1997).
[CrossRef]

B. Oudega, M. Vandenbol, G. Koningstein, “A 12 kb nucleotide sequence containing the alanine dehydrogenase gene at 279 degrees on the Bacillus subtilis chromosome,” Microbiology 143(Pt 5), 1489–1491 (1997).
[CrossRef]

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

P. M. Pellegrino, N. F. Fell, D. L. Rosen, J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755–1760 (1997).
[CrossRef]

1994 (2)

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104(3 Pt 1), 264–268 (1994).

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

1990 (2)

A. J. Anderson, G. W. Haywood, E. A. Dawes, “Biosynthesis and composition of bacterial poly(hydroxyalkanoates),” Int. J. Biol. Macromol. 12, 102–105 (1990).
[CrossRef] [PubMed]

L. E. Sacks, “Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine,” Appl. Environ. Microbiol. 56, 1185–1187 (1990).
[PubMed]

1987 (1)

1986 (1)

1983 (1)

A. D. Wrath, “Determination of dipicolinic acid in bacterial spores by derviative spectroscopy,” Anal. Biochem. 130, 502–505 (1983).
[CrossRef]

1982 (2)

S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy,” J. Biol. Chem. 257, 8086–8090 (1982).
[PubMed]

S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. I. Isolation and characterization,” J. Biol. Chem. 257, 8081–8085 (1982).
[PubMed]

1976 (1)

T. D. Barela, A. D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
[CrossRef] [PubMed]

Alfano, R. R.

A. Katz, H. E. Savage, S. P. Schantz, S. A. McCormick, R. R. Alfano, “Noninvasive native fluorescence imaging of head and neck tumors,” Technology in Cancer Research and Treatment 1, 9–16 (2002).

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, R. R. Alfano, “Spectroscopic properties of tryptophan and bacteria,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE2387, 169–172 (1995).
[CrossRef]

Anderson, A. J.

A. J. Anderson, G. W. Haywood, E. A. Dawes, “Biosynthesis and composition of bacterial poly(hydroxyalkanoates),” Int. J. Biol. Macromol. 12, 102–105 (1990).
[CrossRef] [PubMed]

Antonio, M.

S. P. Watson, M. Antonio, S. J. Foster, “Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery,” Microbiology 144(Pt 11), 3159–3169 (1998).
[CrossRef]

Barela, T. D.

T. D. Barela, A. D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
[CrossRef] [PubMed]

Behravan, J.

A. Moir, B. M. Corfe, J. Behravan, “Spore germination,” Cell Mol. Life Sci. 59, 403–409 (2002).
[CrossRef] [PubMed]

Britt, D.

Bronk, B. V.

Bsat, N.

N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann, “Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors,” Mol. Microbiol. 29, 189–198 (1998).
[CrossRef] [PubMed]

Cabrera, G.

A. Xiong, V. K. Singh, G. Cabrera, R. K. Jayaswal, “Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus,” Microbiology 146(Pt 3), 659–668 (2000).

Cary, W. K.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol. Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Casillas-Martinez, L.

N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann, “Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors,” Mol. Microbiol. 29, 189–198 (1998).
[CrossRef] [PubMed]

Clements, M. O.

M. O. Clements, S. J. Foster, “Starvation recovery of Staphylococcus aureus 8325-4,” Microbiology 144(Pt 7), 1755–1763 (1998).
[CrossRef]

S. P. Watson, M. O. Clements, S. J. Foster, “Characterization of the starvation-survival response of Staphylococcus aureus,” J. Bacteriol. 180, 1750–1758 (1998).
[PubMed]

Corfe, B. M.

A. Moir, B. M. Corfe, J. Behravan, “Spore germination,” Cell Mol. Life Sci. 59, 403–409 (2002).
[CrossRef] [PubMed]

Cosloy, S.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, R. R. Alfano, “Spectroscopic properties of tryptophan and bacteria,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE2387, 169–172 (1995).
[CrossRef]

Crabtree, K. T.

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Goodheart, Fundamentals of Microbiology, 9th ed. (W. B. Saunders, Philadelphia, 1974).

Dalterio, R. A.

Dawes, E. A.

A. J. Anderson, G. W. Haywood, E. A. Dawes, “Biosynthesis and composition of bacterial poly(hydroxyalkanoates),” Int. J. Biol. Macromol. 12, 102–105 (1990).
[CrossRef] [PubMed]

Driks, A.

A. Driks, “Overview: development in bacteria: spore formation in Bacillus subtilis,” Cell Mol. Life Sci. 59, 389–391 (2002).
[CrossRef] [PubMed]

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinic acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

Efrima, S.

Eversole, J. D.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol. Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Fell, N. F.

N. F. Fell, P. M. Pellegrino, J. B. Gillespie, “Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence,” Anal. Chim. Acta 426, 43–50 (2001).
[CrossRef]

P. M. Pellegrino, N. F. Fell, D. L. Rosen, J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755–1760 (1997).
[CrossRef]

Foster, S. J.

S. P. Watson, M. Antonio, S. J. Foster, “Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery,” Microbiology 144(Pt 11), 3159–3169 (1998).
[CrossRef]

S. P. Watson, M. O. Clements, S. J. Foster, “Characterization of the starvation-survival response of Staphylococcus aureus,” J. Bacteriol. 180, 1750–1758 (1998).
[PubMed]

M. O. Clements, S. J. Foster, “Starvation recovery of Staphylococcus aureus 8325-4,” Microbiology 144(Pt 7), 1755–1763 (1998).
[CrossRef]

Frobisher, M.

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Goodheart, Fundamentals of Microbiology, 9th ed. (W. B. Saunders, Philadelphia, 1974).

Gillespie, J. B.

N. F. Fell, P. M. Pellegrino, J. B. Gillespie, “Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence,” Anal. Chim. Acta 426, 43–50 (2001).
[CrossRef]

P. M. Pellegrino, N. F. Fell, D. L. Rosen, J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755–1760 (1997).
[CrossRef]

Goodheart, C. R.

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Goodheart, Fundamentals of Microbiology, 9th ed. (W. B. Saunders, Philadelphia, 1974).

Hall, E. A.

A. A. Hindle, E. A. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst 124, 1599–1604 (1999).
[CrossRef]

Hardgrove, J. J.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol. Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Haywood, G. W.

A. J. Anderson, G. W. Haywood, E. A. Dawes, “Biosynthesis and composition of bacterial poly(hydroxyalkanoates),” Int. J. Biol. Macromol. 12, 102–105 (1990).
[CrossRef] [PubMed]

Helmann, J. D.

N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann, “Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors,” Mol. Microbiol. 29, 189–198 (1998).
[CrossRef] [PubMed]

Herbig, A.

N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann, “Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors,” Mol. Microbiol. 29, 189–198 (1998).
[CrossRef] [PubMed]

Hindle, A. A.

A. A. Hindle, E. A. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst 124, 1599–1604 (1999).
[CrossRef]

Hinsdill, R. D.

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Goodheart, Fundamentals of Microbiology, 9th ed. (W. B. Saunders, Philadelphia, 1974).

Huang, Z. Z.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, R. R. Alfano, “Spectroscopic properties of tryptophan and bacteria,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE2387, 169–172 (1995).
[CrossRef]

Jayaswal, R. K.

A. Xiong, V. K. Singh, G. Cabrera, R. K. Jayaswal, “Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus,” Microbiology 146(Pt 3), 659–668 (2000).

Katz, A.

A. Katz, H. E. Savage, S. P. Schantz, S. A. McCormick, R. R. Alfano, “Noninvasive native fluorescence imaging of head and neck tumors,” Technology in Cancer Research and Treatment 1, 9–16 (2002).

Koningstein, G.

B. Oudega, M. Vandenbol, G. Koningstein, “A 12 kb nucleotide sequence containing the alanine dehydrogenase gene at 279 degrees on the Bacillus subtilis chromosome,” Microbiology 143(Pt 5), 1489–1491 (1997).
[CrossRef]

Llinas, M.

S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy,” J. Biol. Chem. 257, 8086–8090 (1982).
[PubMed]

S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. I. Isolation and characterization,” J. Biol. Chem. 257, 8081–8085 (1982).
[PubMed]

McCormick, S. A.

A. Katz, H. E. Savage, S. P. Schantz, S. A. McCormick, R. R. Alfano, “Noninvasive native fluorescence imaging of head and neck tumors,” Technology in Cancer Research and Treatment 1, 9–16 (2002).

McGown, L. B.

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

Melly, E.

B. Setlow, E. Melly, P. Setlow, “Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination,” J. Bacteriol. 183, 4894–4899 (2001).
[CrossRef] [PubMed]

Moir, A.

A. Moir, B. M. Corfe, J. Behravan, “Spore germination,” Cell Mol. Life Sci. 59, 403–409 (2002).
[CrossRef] [PubMed]

Nelson, W. H.

Nicholson, W. L.

W. L. Nicholson, “Roles of Bacillus endospores in the environment,” Cell Mol. Life Sci. 59, 410–416 (2002).
[CrossRef] [PubMed]

T. A. Slieman, W. L. Nicholson, “Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation,” Appl. Environ. Microbiol. 67, 1274–1279 (2001).
[CrossRef] [PubMed]

Nudelman, R.

Ossoff, R. H.

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104(3 Pt 1), 264–268 (1994).

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

Oudega, B.

B. Oudega, M. Vandenbol, G. Koningstein, “A 12 kb nucleotide sequence containing the alanine dehydrogenase gene at 279 degrees on the Bacillus subtilis chromosome,” Microbiology 143(Pt 5), 1489–1491 (1997).
[CrossRef]

Paidhungat, M.

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinic acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

Pellegrino, P. M.

N. F. Fell, P. M. Pellegrino, J. B. Gillespie, “Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence,” Anal. Chim. Acta 426, 43–50 (2001).
[CrossRef]

P. M. Pellegrino, N. F. Fell, D. L. Rosen, J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755–1760 (1997).
[CrossRef]

Philson, S. B.

S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy,” J. Biol. Chem. 257, 8086–8090 (1982).
[PubMed]

S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. I. Isolation and characterization,” J. Biol. Chem. 257, 8081–8085 (1982).
[PubMed]

Psaras, D.

Raymond, K. N.

J. R. Telford, K. N. Raymond, “Amonabactin: a family of novel siderophores from a pathogenic bacterum,” J. Biol. Inorg. Chem. 2, 750–761 (1997).
[CrossRef]

Reinisch, L.

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104(3 Pt 1), 264–268 (1994).

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

Roselle, D. C.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol. Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Rosen, D. L.

D. L. Rosen, “Wavelength pair selection for bacterial enodspore detection by use of terbium dipicolinate photoluminescence,” Appl. Opt. 37, 805–807 (1998).
[CrossRef]

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

P. M. Pellegrino, N. F. Fell, D. L. Rosen, J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755–1760 (1997).
[CrossRef]

Sacks, L. E.

L. E. Sacks, “Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine,” Appl. Environ. Microbiol. 56, 1185–1187 (1990).
[PubMed]

Savage, H. E.

A. Katz, H. E. Savage, S. P. Schantz, S. A. McCormick, R. R. Alfano, “Noninvasive native fluorescence imaging of head and neck tumors,” Technology in Cancer Research and Treatment 1, 9–16 (2002).

Schantz, S. P.

A. Katz, H. E. Savage, S. P. Schantz, S. A. McCormick, R. R. Alfano, “Noninvasive native fluorescence imaging of head and neck tumors,” Technology in Cancer Research and Treatment 1, 9–16 (2002).

Seaver, M.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol. Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Setlow, B.

B. Setlow, E. Melly, P. Setlow, “Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination,” J. Bacteriol. 183, 4894–4899 (2001).
[CrossRef] [PubMed]

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinic acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

Setlow, P.

B. Setlow, E. Melly, P. Setlow, “Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination,” J. Bacteriol. 183, 4894–4899 (2001).
[CrossRef] [PubMed]

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinic acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann, “Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors,” Mol. Microbiol. 29, 189–198 (1998).
[CrossRef] [PubMed]

Sharpless, C.

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

Sherry, A. D.

T. D. Barela, A. D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
[CrossRef] [PubMed]

Singh, V. K.

A. Xiong, V. K. Singh, G. Cabrera, R. K. Jayaswal, “Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus,” Microbiology 146(Pt 3), 659–668 (2000).

Slieman, T. A.

T. A. Slieman, W. L. Nicholson, “Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation,” Appl. Environ. Microbiol. 67, 1274–1279 (2001).
[CrossRef] [PubMed]

Sorrell, M.

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104(3 Pt 1), 264–268 (1994).

Sorrell, M. J.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

Sperry, J.

Sperry, J. F.

Steiner, R. F.

I. Weinryb, R. F. Steiner, “The luminescence of the aromatic amino acids,” in Excited States of Proteins and Nucleic Acids, I. Weinryb, R. F. Steiner, eds. (Plenum, New York, 1971), pp. 277–319.
[CrossRef]

Suib, S. L.

Tang, G. C.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, R. R. Alfano, “Spectroscopic properties of tryptophan and bacteria,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE2387, 169–172 (1995).
[CrossRef]

Tanguay, J. F.

Telford, J. R.

J. R. Telford, K. N. Raymond, “Amonabactin: a family of novel siderophores from a pathogenic bacterum,” J. Biol. Inorg. Chem. 2, 750–761 (1997).
[CrossRef]

Tribble, J.

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104(3 Pt 1), 264–268 (1994).

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

Vandenbol, M.

B. Oudega, M. Vandenbol, G. Koningstein, “A 12 kb nucleotide sequence containing the alanine dehydrogenase gene at 279 degrees on the Bacillus subtilis chromosome,” Microbiology 143(Pt 5), 1489–1491 (1997).
[CrossRef]

Watson, S. P.

S. P. Watson, M. Antonio, S. J. Foster, “Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery,” Microbiology 144(Pt 11), 3159–3169 (1998).
[CrossRef]

S. P. Watson, M. O. Clements, S. J. Foster, “Characterization of the starvation-survival response of Staphylococcus aureus,” J. Bacteriol. 180, 1750–1758 (1998).
[PubMed]

Weinryb, I.

I. Weinryb, R. F. Steiner, “The luminescence of the aromatic amino acids,” in Excited States of Proteins and Nucleic Acids, I. Weinryb, R. F. Steiner, eds. (Plenum, New York, 1971), pp. 277–319.
[CrossRef]

Werkhaven, J. A.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104(3 Pt 1), 264–268 (1994).

Wrath, A. D.

A. D. Wrath, “Determination of dipicolinic acid in bacterial spores by derviative spectroscopy,” Anal. Biochem. 130, 502–505 (1983).
[CrossRef]

Xiong, A.

A. Xiong, V. K. Singh, G. Cabrera, R. K. Jayaswal, “Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus,” Microbiology 146(Pt 3), 659–668 (2000).

Yang, Y. L.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, R. R. Alfano, “Spectroscopic properties of tryptophan and bacteria,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE2387, 169–172 (1995).
[CrossRef]

Zhou, F.

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, R. R. Alfano, “Spectroscopic properties of tryptophan and bacteria,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE2387, 169–172 (1995).
[CrossRef]

Aerosol. Sci. Technol. (1)

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol. Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Anal. Biochem. (2)

A. D. Wrath, “Determination of dipicolinic acid in bacterial spores by derviative spectroscopy,” Anal. Biochem. 130, 502–505 (1983).
[CrossRef]

T. D. Barela, A. D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
[CrossRef] [PubMed]

Anal. Chem. (2)

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

P. M. Pellegrino, N. F. Fell, D. L. Rosen, J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755–1760 (1997).
[CrossRef]

Anal. Chim. Acta (1)

N. F. Fell, P. M. Pellegrino, J. B. Gillespie, “Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence,” Anal. Chim. Acta 426, 43–50 (2001).
[CrossRef]

Analyst (1)

A. A. Hindle, E. A. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst 124, 1599–1604 (1999).
[CrossRef]

Appl. Environ. Microbiol. (2)

T. A. Slieman, W. L. Nicholson, “Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation,” Appl. Environ. Microbiol. 67, 1274–1279 (2001).
[CrossRef] [PubMed]

L. E. Sacks, “Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine,” Appl. Environ. Microbiol. 56, 1185–1187 (1990).
[PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (3)

Cell Mol. Life Sci. (3)

A. Driks, “Overview: development in bacteria: spore formation in Bacillus subtilis,” Cell Mol. Life Sci. 59, 389–391 (2002).
[CrossRef] [PubMed]

W. L. Nicholson, “Roles of Bacillus endospores in the environment,” Cell Mol. Life Sci. 59, 410–416 (2002).
[CrossRef] [PubMed]

A. Moir, B. M. Corfe, J. Behravan, “Spore germination,” Cell Mol. Life Sci. 59, 403–409 (2002).
[CrossRef] [PubMed]

Int. J. Biol. Macromol. (1)

A. J. Anderson, G. W. Haywood, E. A. Dawes, “Biosynthesis and composition of bacterial poly(hydroxyalkanoates),” Int. J. Biol. Macromol. 12, 102–105 (1990).
[CrossRef] [PubMed]

J. Bacteriol. (3)

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinic acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

B. Setlow, E. Melly, P. Setlow, “Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination,” J. Bacteriol. 183, 4894–4899 (2001).
[CrossRef] [PubMed]

S. P. Watson, M. O. Clements, S. J. Foster, “Characterization of the starvation-survival response of Staphylococcus aureus,” J. Bacteriol. 180, 1750–1758 (1998).
[PubMed]

J. Biol. Chem. (2)

S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy,” J. Biol. Chem. 257, 8086–8090 (1982).
[PubMed]

S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. I. Isolation and characterization,” J. Biol. Chem. 257, 8081–8085 (1982).
[PubMed]

J. Biol. Inorg. Chem. (1)

J. R. Telford, K. N. Raymond, “Amonabactin: a family of novel siderophores from a pathogenic bacterum,” J. Biol. Inorg. Chem. 2, 750–761 (1997).
[CrossRef]

Laryngoscope (1)

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104(3 Pt 1), 264–268 (1994).

Lasers Surg. Med. (1)

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

Microbiology (4)

M. O. Clements, S. J. Foster, “Starvation recovery of Staphylococcus aureus 8325-4,” Microbiology 144(Pt 7), 1755–1763 (1998).
[CrossRef]

S. P. Watson, M. Antonio, S. J. Foster, “Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery,” Microbiology 144(Pt 11), 3159–3169 (1998).
[CrossRef]

B. Oudega, M. Vandenbol, G. Koningstein, “A 12 kb nucleotide sequence containing the alanine dehydrogenase gene at 279 degrees on the Bacillus subtilis chromosome,” Microbiology 143(Pt 5), 1489–1491 (1997).
[CrossRef]

A. Xiong, V. K. Singh, G. Cabrera, R. K. Jayaswal, “Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus,” Microbiology 146(Pt 3), 659–668 (2000).

Mol. Microbiol. (1)

N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann, “Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors,” Mol. Microbiol. 29, 189–198 (1998).
[CrossRef] [PubMed]

Technology in Cancer Research and Treatment (1)

A. Katz, H. E. Savage, S. P. Schantz, S. A. McCormick, R. R. Alfano, “Noninvasive native fluorescence imaging of head and neck tumors,” Technology in Cancer Research and Treatment 1, 9–16 (2002).

Other (3)

I. Weinryb, R. F. Steiner, “The luminescence of the aromatic amino acids,” in Excited States of Proteins and Nucleic Acids, I. Weinryb, R. F. Steiner, eds. (Plenum, New York, 1971), pp. 277–319.
[CrossRef]

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Goodheart, Fundamentals of Microbiology, 9th ed. (W. B. Saunders, Philadelphia, 1974).

G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, R. R. Alfano, “Spectroscopic properties of tryptophan and bacteria,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE2387, 169–172 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption spectra for β-HBA, DPA, and tryptophan. Absorption in the DPA between 330 and 400 nm was only observed in very high concentrations in nearly saturated solutions.

Fig. 2
Fig. 2

(a) DPA emission spectra (λex = 330 and 270 nm) and excitation spectrum (λem = 430 nm); (b) β-HBA emission spectrum (λex = 270 nm); (c) tryptophan emission spectrum (λex = 270 nm) and excitation (λem = 340 nm) spectrum.

Fig. 3
Fig. 3

Emission spectra (scan A, λex = 270 and scan B, λex = 340 nm) and excitation spectra (scan C, λem = 460; scan D, λem = 410; scan E, λem = 340 nm) (a) for Bs and (b) for Sa at t = 0 (2 h after removal from the growth media).

Fig. 4
Fig. 4

Emission spectra (scan A, λex = 270 and scan B, λex = 340 nm) and excitation spectra (scan C, λem = 460; scan D, λem = 410; scan E, λem = 340 nm) (a) for Bs and (b) for Sa at t = 96 h.

Fig. 5
Fig. 5

Peak emission intensity plotted as a function of time (a) for DPA (λex = 340 nm, λem = 410 nm) and (b) tryptophan (λex = 280 nm, λem = 340 nm) from Bs and Sa.

Fig. 6
Fig. 6

Emission spectra (scan A, λex = 270 and scan B, λex = 340 nm) and excitation spectra (scan C, λem = 460; scan D, λem = 410; scan E, λem = 340 nm) (a) for Bs and (b) for Sa at t = 144 h.

Fig. 7
Fig. 7

Peak emission intensity plotted as function of time for Bs and Sa with β-HBA added (a) for unidentified siderophore (λex = 400 nm, λem = 460 nm) and (b) for tryptophan (λex = 280 nm, λem = 340 nm).

Fig. 8
Fig. 8

Emission spectra (λex = 340 nm) and excitation spectra (λem = 410 nm) from Bs before and after adding DPA. Suspensions were 5 days old.

Fig. 9
Fig. 9

Emission (λex = 270) and excitation (λem = 410) spectra from Bs suspension with β-HBA and corresponding filtrate before and after addition of Fe2+ (HCl).

Fig. 10
Fig. 10

Absorption spectra of 1-week-old Bs and filtrate, with and without β-HBA. Fe2+ (HCl) was added to the filtrate for which β-HBA had been added.

Tables (1)

Tables Icon

Table 1 Scan Parameters

Metrics