Abstract

Multimode polymer waveguides and fiber-to-waveguide couplers have been integrated with microfluidic channels by use of a single-mask-step procedure, which ensured self-alignment between the optics and the fluidics and allowed a fabrication and packaging time of only one day. Three fabrication procedures for obtaining hermetically sealed channels were investigated, and the spectrally resolved propagation loss (400–900 nm) of the integrated waveguides was determined for all three procedures. Two chemical absorbance cells with optical path lengths of 100 and 1000 μm were furthermore fabricated and characterized in terms of coupling loss, sensitivity, and limit of detection for measurements of the dye bromothymol blue.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74, 2623–2636 (2002).
    [CrossRef] [PubMed]
  2. P. A. Auroux, D. R. Reyes, D. Iossifidis, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74, 2637–2652 (2002).
    [CrossRef] [PubMed]
  3. D. Sobek, S. D. Senturia, M. K. Gray, “Microfabricated fused silica flow chambers for flow cytometry,” in Proceedings of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), pp. 260–263.
  4. Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996).
    [CrossRef]
  5. L. Cui, T. Zhang, H. Morgan, “Optical particle detection integrated in a dielectrophoretic lab-on-a-chip,” J. Micromech. Microeng. 12, 7–12 (2002).
    [CrossRef]
  6. J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
    [CrossRef] [PubMed]
  7. G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000).
    [CrossRef]
  8. K. B. Mogensen, N. J. Petersen, J. Hübner, J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
    [CrossRef] [PubMed]
  9. J. N. McMullin, “Laser fabrication of integrated microfluidic/micro-optic systems,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 1050–1055 (2000).
    [CrossRef]
  10. G. B. Lee, C. H. Lin, G. L. Chang, “Multi-cell-line micro flow cytometers with buried SU-8/SOG optical waveguides,” in Proceedings of the Fifteenth Annual IEEE International Microelectromechanical Systems 2002 Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 503–506.
  11. R. B. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263–269 (2001).
    [CrossRef]
  12. J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11, 20–26 (2001).
    [CrossRef]
  13. Y. Wakamoto, I. Inoue, H. Moriguchi, K. Yasuda, “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping,” Fresenius J. Anal. Chem. 371, 276–281 (2001).
    [CrossRef] [PubMed]
  14. M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, “High-aspect ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” in Proceedings of the Tenth Annual IEEE International Microelectromechanical Systems 1997 Conference (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 518–522.
  15. Z. G. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
    [CrossRef]
  16. J. P. Kutter, “Recent developments in electrophoretic and chromatographic separation methods on microfabricated devices,” Trends Anal. Chem. 19, 352–363 (2000).
    [CrossRef]
  17. E. Verpoorte, “Microfluidic chips for clinical and forensic analysis,” Electrophoresis 23, 677–712 (2002).
    [CrossRef] [PubMed]
  18. M. E. Foquet, J. Han, W. Wright, H. G. Craighead, “Fabrication of microcapillaries and waveguides for single molecule detection,” in Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications, P. L. Gourley, ed., Proc. SPIE3258, 141–147 (1998).
    [CrossRef]
  19. P. Friis, K. Hoppe, O. Leistiko, A. Wolff, P. Telleman, “Integrated optics for bio/chemical microsystems,” in Proceedings of Eurosensors XIII (The Hague, The Netherlands, 1999), pp. 287–288.
  20. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246–6251 (2001).
    [CrossRef]
  21. K. B. Mogensen, P. Friis, J. Hübner, N. J. Petersen, A. M. Jorgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
    [CrossRef]
  22. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1991), Chaps. 5 and 9.
  23. L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997).
    [CrossRef]
  24. H. Klank, J. P. Kutter, O. Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on a Chip, 2, 242–246 (2002).
    [CrossRef]
  25. P. D. Curtis, S. Lezekiel, R. E. Miles, C. R. Pescod, “SU-8 as a material for integrated all-optical microwave filters,” Microwave Eng., April2001, pp. 51–56.
  26. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
    [CrossRef]
  27. D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry (Saunders College Publishing, New York, 1997).
  28. H. Salimi-Moosavi, Y. Jiang, L. Lester, G. McKinnon, D. J. Harrison, “A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices,” Electrophoresis 21, 1291–1299 (2000).
    [CrossRef] [PubMed]
  29. R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002).
    [CrossRef]

2002 (6)

R. D. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74, 2623–2636 (2002).
[CrossRef] [PubMed]

P. A. Auroux, D. R. Reyes, D. Iossifidis, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74, 2637–2652 (2002).
[CrossRef] [PubMed]

L. Cui, T. Zhang, H. Morgan, “Optical particle detection integrated in a dielectrophoretic lab-on-a-chip,” J. Micromech. Microeng. 12, 7–12 (2002).
[CrossRef]

E. Verpoorte, “Microfluidic chips for clinical and forensic analysis,” Electrophoresis 23, 677–712 (2002).
[CrossRef] [PubMed]

H. Klank, J. P. Kutter, O. Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on a Chip, 2, 242–246 (2002).
[CrossRef]

R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002).
[CrossRef]

2001 (7)

K. B. Mogensen, P. Friis, J. Hübner, N. J. Petersen, A. M. Jorgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246–6251 (2001).
[CrossRef]

P. D. Curtis, S. Lezekiel, R. E. Miles, C. R. Pescod, “SU-8 as a material for integrated all-optical microwave filters,” Microwave Eng., April2001, pp. 51–56.

K. B. Mogensen, N. J. Petersen, J. Hübner, J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
[CrossRef] [PubMed]

R. B. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263–269 (2001).
[CrossRef]

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11, 20–26 (2001).
[CrossRef]

Y. Wakamoto, I. Inoue, H. Moriguchi, K. Yasuda, “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping,” Fresenius J. Anal. Chem. 371, 276–281 (2001).
[CrossRef] [PubMed]

2000 (5)

J. P. Kutter, “Recent developments in electrophoretic and chromatographic separation methods on microfabricated devices,” Trends Anal. Chem. 19, 352–363 (2000).
[CrossRef]

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000).
[CrossRef]

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

H. Salimi-Moosavi, Y. Jiang, L. Lester, G. McKinnon, D. J. Harrison, “A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices,” Electrophoresis 21, 1291–1299 (2000).
[CrossRef] [PubMed]

1996 (1)

Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996).
[CrossRef]

Aitchison, J. S.

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Auroux, P. A.

P. A. Auroux, D. R. Reyes, D. Iossifidis, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74, 2637–2652 (2002).
[CrossRef] [PubMed]

R. D. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74, 2623–2636 (2002).
[CrossRef] [PubMed]

Benoit, V.

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Berg, A. van den

G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000).
[CrossRef]

Brugger, J.

M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, “High-aspect ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” in Proceedings of the Tenth Annual IEEE International Microelectromechanical Systems 1997 Conference (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 518–522.

Chang, G. L.

G. B. Lee, C. H. Lin, G. L. Chang, “Multi-cell-line micro flow cytometers with buried SU-8/SOG optical waveguides,” in Proceedings of the Fifteenth Annual IEEE International Microelectromechanical Systems 2002 Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 503–506.

Chiem, N.

Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996).
[CrossRef]

Cooper, J. M.

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Craighead, H. G.

M. E. Foquet, J. Han, W. Wright, H. G. Craighead, “Fabrication of microcapillaries and waveguides for single molecule detection,” in Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications, P. L. Gourley, ed., Proc. SPIE3258, 141–147 (1998).
[CrossRef]

Cui, L.

L. Cui, T. Zhang, H. Morgan, “Optical particle detection integrated in a dielectrophoretic lab-on-a-chip,” J. Micromech. Microeng. 12, 7–12 (2002).
[CrossRef]

Curtis, P. D.

P. D. Curtis, S. Lezekiel, R. E. Miles, C. R. Pescod, “SU-8 as a material for integrated all-optical microwave filters,” Microwave Eng., April2001, pp. 51–56.

Despont, M.

M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, “High-aspect ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” in Proceedings of the Tenth Annual IEEE International Microelectromechanical Systems 1997 Conference (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 518–522.

Dijkstra, M.

G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000).
[CrossRef]

Eldada, L.

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997).
[CrossRef]

Elwenspoek, M. C.

R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002).
[CrossRef]

Fahrni, N.

M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, “High-aspect ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” in Proceedings of the Tenth Annual IEEE International Microelectromechanical Systems 1997 Conference (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 518–522.

Floyd, T. M.

R. B. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263–269 (2001).
[CrossRef]

Fluri, K.

Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996).
[CrossRef]

Foquet, M. E.

M. E. Foquet, J. Han, W. Wright, H. G. Craighead, “Fabrication of microcapillaries and waveguides for single molecule detection,” in Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications, P. L. Gourley, ed., Proc. SPIE3258, 141–147 (1998).
[CrossRef]

Friis, P.

Gardeniers, J. G. E.

R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002).
[CrossRef]

Geschke, O.

H. Klank, J. P. Kutter, O. Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on a Chip, 2, 242–246 (2002).
[CrossRef]

Ghodssi, R.

R. B. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263–269 (2001).
[CrossRef]

Gong, H. Q.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11, 20–26 (2001).
[CrossRef]

Gray, M. K.

D. Sobek, S. D. Senturia, M. K. Gray, “Microfabricated fused silica flow chambers for flow cytometry,” in Proceedings of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), pp. 260–263.

Gui, C.

G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000).
[CrossRef]

Han, J.

M. E. Foquet, J. Han, W. Wright, H. G. Craighead, “Fabrication of microcapillaries and waveguides for single molecule detection,” in Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications, P. L. Gourley, ed., Proc. SPIE3258, 141–147 (1998).
[CrossRef]

Harrison, D. J.

H. Salimi-Moosavi, Y. Jiang, L. Lester, G. McKinnon, D. J. Harrison, “A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices,” Electrophoresis 21, 1291–1299 (2000).
[CrossRef] [PubMed]

Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996).
[CrossRef]

Holler, F. J.

D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry (Saunders College Publishing, New York, 1997).

Hong, G. D.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11, 20–26 (2001).
[CrossRef]

Hoppe, K.

P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246–6251 (2001).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, A. Wolff, P. Telleman, “Integrated optics for bio/chemical microsystems,” in Proceedings of Eurosensors XIII (The Hague, The Netherlands, 1999), pp. 287–288.

Hübner, J.

Inoue, I.

Y. Wakamoto, I. Inoue, H. Moriguchi, K. Yasuda, “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping,” Fresenius J. Anal. Chem. 371, 276–281 (2001).
[CrossRef] [PubMed]

Iossifidis, D.

P. A. Auroux, D. R. Reyes, D. Iossifidis, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74, 2637–2652 (2002).
[CrossRef] [PubMed]

R. D. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74, 2623–2636 (2002).
[CrossRef] [PubMed]

Jackman, R. B.

R. B. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263–269 (2001).
[CrossRef]

Jensen, K. F.

R. B. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263–269 (2001).
[CrossRef]

Jian, L.

Z. G. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
[CrossRef]

Jiang, Y.

H. Salimi-Moosavi, Y. Jiang, L. Lester, G. McKinnon, D. J. Harrison, “A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices,” Electrophoresis 21, 1291–1299 (2000).
[CrossRef] [PubMed]

Jorgensen, A. M.

Klank, H.

H. Klank, J. P. Kutter, O. Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on a Chip, 2, 242–246 (2002).
[CrossRef]

Koster, T. M.

G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000).
[CrossRef]

Kutter, J. P.

H. Klank, J. P. Kutter, O. Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on a Chip, 2, 242–246 (2002).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246–6251 (2001).
[CrossRef]

K. B. Mogensen, P. Friis, J. Hübner, N. J. Petersen, A. M. Jorgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

K. B. Mogensen, N. J. Petersen, J. Hübner, J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
[CrossRef] [PubMed]

J. P. Kutter, “Recent developments in electrophoretic and chromatographic separation methods on microfabricated devices,” Trends Anal. Chem. 19, 352–363 (2000).
[CrossRef]

Lambeck, P. V.

G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000).
[CrossRef]

Lee, G. B.

G. B. Lee, C. H. Lin, G. L. Chang, “Multi-cell-line micro flow cytometers with buried SU-8/SOG optical waveguides,” in Proceedings of the Fifteenth Annual IEEE International Microelectromechanical Systems 2002 Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 503–506.

Leistiko, O.

P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246–6251 (2001).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, A. Wolff, P. Telleman, “Integrated optics for bio/chemical microsystems,” in Proceedings of Eurosensors XIII (The Hague, The Netherlands, 1999), pp. 287–288.

Lester, L.

H. Salimi-Moosavi, Y. Jiang, L. Lester, G. McKinnon, D. J. Harrison, “A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices,” Electrophoresis 21, 1291–1299 (2000).
[CrossRef] [PubMed]

Lezekiel, S.

P. D. Curtis, S. Lezekiel, R. E. Miles, C. R. Pescod, “SU-8 as a material for integrated all-optical microwave filters,” Microwave Eng., April2001, pp. 51–56.

Lian, K.

Z. G. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
[CrossRef]

Liang, Z.

Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996).
[CrossRef]

Lin, C. H.

G. B. Lee, C. H. Lin, G. L. Chang, “Multi-cell-line micro flow cytometers with buried SU-8/SOG optical waveguides,” in Proceedings of the Fifteenth Annual IEEE International Microelectromechanical Systems 2002 Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 503–506.

Ling, Z. G.

Z. G. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
[CrossRef]

Lorenz, H.

M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, “High-aspect ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” in Proceedings of the Tenth Annual IEEE International Microelectromechanical Systems 1997 Conference (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 518–522.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1991), Chaps. 5 and 9.

Manz, A.

R. D. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74, 2623–2636 (2002).
[CrossRef] [PubMed]

P. A. Auroux, D. R. Reyes, D. Iossifidis, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74, 2637–2652 (2002).
[CrossRef] [PubMed]

McKinnon, G.

H. Salimi-Moosavi, Y. Jiang, L. Lester, G. McKinnon, D. J. Harrison, “A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices,” Electrophoresis 21, 1291–1299 (2000).
[CrossRef] [PubMed]

McMullin, J. N.

J. N. McMullin, “Laser fabrication of integrated microfluidic/micro-optic systems,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 1050–1055 (2000).
[CrossRef]

Miles, R. E.

P. D. Curtis, S. Lezekiel, R. E. Miles, C. R. Pescod, “SU-8 as a material for integrated all-optical microwave filters,” Microwave Eng., April2001, pp. 51–56.

Mogensen, K. B.

Morgan, H.

L. Cui, T. Zhang, H. Morgan, “Optical particle detection integrated in a dielectrophoretic lab-on-a-chip,” J. Micromech. Microeng. 12, 7–12 (2002).
[CrossRef]

Moriguchi, H.

Y. Wakamoto, I. Inoue, H. Moriguchi, K. Yasuda, “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping,” Fresenius J. Anal. Chem. 371, 276–281 (2001).
[CrossRef] [PubMed]

Norwood, R. A.

L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997).
[CrossRef]

Ocvirk, G.

Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996).
[CrossRef]

Pandraud, G.

G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000).
[CrossRef]

Pescod, C. R.

P. D. Curtis, S. Lezekiel, R. E. Miles, C. R. Pescod, “SU-8 as a material for integrated all-optical microwave filters,” Microwave Eng., April2001, pp. 51–56.

Petersen, N. J.

K. B. Mogensen, P. Friis, J. Hübner, N. J. Petersen, A. M. Jorgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

K. B. Mogensen, N. J. Petersen, J. Hübner, J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
[CrossRef] [PubMed]

Renaud, P.

M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, “High-aspect ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” in Proceedings of the Tenth Annual IEEE International Microelectromechanical Systems 1997 Conference (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 518–522.

Reyes, D. R.

P. A. Auroux, D. R. Reyes, D. Iossifidis, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74, 2637–2652 (2002).
[CrossRef] [PubMed]

Reyes, R. D.

R. D. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74, 2623–2636 (2002).
[CrossRef] [PubMed]

Ruano, J. M.

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Salimi-Moosavi, H.

H. Salimi-Moosavi, Y. Jiang, L. Lester, G. McKinnon, D. J. Harrison, “A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices,” Electrophoresis 21, 1291–1299 (2000).
[CrossRef] [PubMed]

Sanders, R. G. P.

R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002).
[CrossRef]

Schmidt, M. A.

R. B. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263–269 (2001).
[CrossRef]

Senturia, S. D.

D. Sobek, S. D. Senturia, M. K. Gray, “Microfabricated fused silica flow chambers for flow cytometry,” in Proceedings of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), pp. 260–263.

Shacklette, L. W.

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997).
[CrossRef]

Skoog, D. A.

D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry (Saunders College Publishing, New York, 1997).

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1991), Chaps. 5 and 9.

Sobek, D.

D. Sobek, S. D. Senturia, M. K. Gray, “Microfabricated fused silica flow chambers for flow cytometry,” in Proceedings of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), pp. 260–263.

Stengel, K. M. T.

L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997).
[CrossRef]

Tan, K. L.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11, 20–26 (2001).
[CrossRef]

Tang, T.

Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996).
[CrossRef]

Telleman, P.

K. B. Mogensen, P. Friis, J. Hübner, N. J. Petersen, A. M. Jorgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, A. Wolff, P. Telleman, “Integrated optics for bio/chemical microsystems,” in Proceedings of Eurosensors XIII (The Hague, The Netherlands, 1999), pp. 287–288.

Tiggelaar, R. M.

R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002).
[CrossRef]

van den Berg, A.

R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002).
[CrossRef]

Veenstra, T. T.

R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002).
[CrossRef]

Verpoorte, E.

E. Verpoorte, “Microfluidic chips for clinical and forensic analysis,” Electrophoresis 23, 677–712 (2002).
[CrossRef] [PubMed]

Vettiger, P.

M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, “High-aspect ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” in Proceedings of the Tenth Annual IEEE International Microelectromechanical Systems 1997 Conference (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 518–522.

Wakamoto, Y.

Y. Wakamoto, I. Inoue, H. Moriguchi, K. Yasuda, “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping,” Fresenius J. Anal. Chem. 371, 276–281 (2001).
[CrossRef] [PubMed]

West, D. M.

D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry (Saunders College Publishing, New York, 1997).

Wolff, A.

P. Friis, K. Hoppe, O. Leistiko, A. Wolff, P. Telleman, “Integrated optics for bio/chemical microsystems,” in Proceedings of Eurosensors XIII (The Hague, The Netherlands, 1999), pp. 287–288.

Wright, W.

M. E. Foquet, J. Han, W. Wright, H. G. Craighead, “Fabrication of microcapillaries and waveguides for single molecule detection,” in Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications, P. L. Gourley, ed., Proc. SPIE3258, 141–147 (1998).
[CrossRef]

Wu, C.

L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997).
[CrossRef]

Xu, C.

L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997).
[CrossRef]

Yang, L. J.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11, 20–26 (2001).
[CrossRef]

Yardley, J.

L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997).
[CrossRef]

Yasuda, K.

Y. Wakamoto, I. Inoue, H. Moriguchi, K. Yasuda, “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping,” Fresenius J. Anal. Chem. 371, 276–281 (2001).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11, 20–26 (2001).
[CrossRef]

Zhang, T.

L. Cui, T. Zhang, H. Morgan, “Optical particle detection integrated in a dielectrophoretic lab-on-a-chip,” J. Micromech. Microeng. 12, 7–12 (2002).
[CrossRef]

Anal. Chem. (4)

R. D. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74, 2623–2636 (2002).
[CrossRef] [PubMed]

P. A. Auroux, D. R. Reyes, D. Iossifidis, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74, 2637–2652 (2002).
[CrossRef] [PubMed]

Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996).
[CrossRef]

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Electrophoresis (3)

H. Salimi-Moosavi, Y. Jiang, L. Lester, G. McKinnon, D. J. Harrison, “A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices,” Electrophoresis 21, 1291–1299 (2000).
[CrossRef] [PubMed]

K. B. Mogensen, N. J. Petersen, J. Hübner, J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
[CrossRef] [PubMed]

E. Verpoorte, “Microfluidic chips for clinical and forensic analysis,” Electrophoresis 23, 677–712 (2002).
[CrossRef] [PubMed]

Fresenius J. Anal. Chem. (1)

Y. Wakamoto, I. Inoue, H. Moriguchi, K. Yasuda, “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping,” Fresenius J. Anal. Chem. 371, 276–281 (2001).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

J. Micromech. Microeng. (3)

R. B. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263–269 (2001).
[CrossRef]

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11, 20–26 (2001).
[CrossRef]

L. Cui, T. Zhang, H. Morgan, “Optical particle detection integrated in a dielectrophoretic lab-on-a-chip,” J. Micromech. Microeng. 12, 7–12 (2002).
[CrossRef]

Lab on a Chip (1)

H. Klank, J. P. Kutter, O. Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on a Chip, 2, 242–246 (2002).
[CrossRef]

Microwave Eng. (1)

P. D. Curtis, S. Lezekiel, R. E. Miles, C. R. Pescod, “SU-8 as a material for integrated all-optical microwave filters,” Microwave Eng., April2001, pp. 51–56.

Opt. Lett. (1)

Sens. Actuators A (1)

G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000).
[CrossRef]

Talanta (1)

R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002).
[CrossRef]

Trends Anal. Chem. (1)

J. P. Kutter, “Recent developments in electrophoretic and chromatographic separation methods on microfabricated devices,” Trends Anal. Chem. 19, 352–363 (2000).
[CrossRef]

Other (10)

D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry (Saunders College Publishing, New York, 1997).

J. N. McMullin, “Laser fabrication of integrated microfluidic/micro-optic systems,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 1050–1055 (2000).
[CrossRef]

G. B. Lee, C. H. Lin, G. L. Chang, “Multi-cell-line micro flow cytometers with buried SU-8/SOG optical waveguides,” in Proceedings of the Fifteenth Annual IEEE International Microelectromechanical Systems 2002 Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 503–506.

D. Sobek, S. D. Senturia, M. K. Gray, “Microfabricated fused silica flow chambers for flow cytometry,” in Proceedings of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), pp. 260–263.

M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, “High-aspect ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” in Proceedings of the Tenth Annual IEEE International Microelectromechanical Systems 1997 Conference (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 518–522.

Z. G. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000).
[CrossRef]

M. E. Foquet, J. Han, W. Wright, H. G. Craighead, “Fabrication of microcapillaries and waveguides for single molecule detection,” in Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications, P. L. Gourley, ed., Proc. SPIE3258, 141–147 (1998).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, A. Wolff, P. Telleman, “Integrated optics for bio/chemical microsystems,” in Proceedings of Eurosensors XIII (The Hague, The Netherlands, 1999), pp. 287–288.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1991), Chaps. 5 and 9.

L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic view of a cross section of the waveguide structure. Air was used as the side-cladding layer to simplify the fabrication scheme.

Fig. 2
Fig. 2

Mask design of a device (3.0 cm × 4.0 cm). It consists of a microfluidic channel network with an injection cross, a separation channel, and two types of absorbance cell. The position of the absorbance cells are indicated by circles and are arranged for detection across the channel width (middle part of the design) and detection along a 1000-μm channel segment (lower part of the design). Planar optical waveguides and fiber-to-waveguide coupler structures are, furthermore, defined in the same layer. The dark regions correspond to the remaining SU-8 layer after structuring.

Fig. 3
Fig. 3

Microscope picture of two fiber-to-waveguide coupling structures. An optical fiber has been inserted into the left coupling structure, and no fiber was inserted into the coupler to the right.

Fig. 4
Fig. 4

Cross-sectional view of the fabrication procedures for integration of SU-8 waveguides, fiber-to-waveguide couplers, and microfluidic channels.

Fig. 5
Fig. 5

Spectrally resolved propagation loss of integrated SU-8 waveguides with three types of cladding layer.

Fig. 6
Fig. 6

Spectrally resolved propagation loss of waveguides baked at 95° C (25 min) and 180° C (35 min).

Fig. 7
Fig. 7

(a) Light launched across a 100-μm-wide microfluidic channel. (b) Light coupled along a microfluidic channel segment of 1000 μm. The channel width was in this case 30 μm.

Fig. 8
Fig. 8

Calibration curves for absorbance cells with nominal path lengths of 100 and 1000 μm. The absorbing dye bromothymol blue and a He-Ne laser operated at 633 nm (05-LHR-901, Melles Griot, California, U.S.) were used for the measurements.

Tables (1)

Tables Icon

Table 1 Sensitivity, Limit of Detection, and Effective Path Length for Absorbance Cells with Nominal Lengths of 100 and 1000 μm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔA=1ln10ΔIcIc2+ΔIrefIref21/2.

Metrics