Abstract

We report the development of a laser-scanning surface plasmon resonance microscope equipped with multiple photodetectors. The system simultaneously obtains images that have different orientations to the specimen under examination, and the system can achieve a spatial resolution of 1.6 μm, which is shorter than the propagation length of the scanning surface plasmons, while high sensitivity to thickness and refractive-index distributions is retained. In addition, because the system uses a laser-scanning microscope, it can obtain high-contrast images. The measurable ranges of refractive-index distributions and thicknesses of specimens that can be measured are also discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).
    [CrossRef]
  2. B. Rothenhäusler, W. Knoll, “Surface-plasmon microsocpy,” Nature 332, 615–617 (1988).
    [CrossRef]
  3. E. M. Yeatman, E. A. Ash, “Surface plasmon scanning microscopy,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE897, 100–107 (1988).
    [CrossRef]
  4. T. Okamoto, I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
    [CrossRef]
  5. C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
    [CrossRef]
  6. H. E. de Bruijn, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426–2430 (1993).
    [CrossRef] [PubMed]
  7. H. Kano, S. Mizuguchi, S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
    [CrossRef]
  8. H. Kano, W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235–239 (1998).
    [CrossRef]
  9. H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
    [CrossRef]
  10. E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  11. C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Surface plasmon propagation near an index step,” Opt. Commun. 167, 183–189 (1999).
    [CrossRef]
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

2000 (1)

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

1999 (1)

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Surface plasmon propagation near an index step,” Opt. Commun. 167, 183–189 (1999).
[CrossRef]

1998 (2)

H. Kano, S. Mizuguchi, S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
[CrossRef]

H. Kano, W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235–239 (1998).
[CrossRef]

1994 (1)

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

1993 (1)

1992 (1)

T. Okamoto, I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

1988 (1)

B. Rothenhäusler, W. Knoll, “Surface-plasmon microsocpy,” Nature 332, 615–617 (1988).
[CrossRef]

1987 (1)

E. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).
[CrossRef]

1968 (1)

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Ash, E. A.

E. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).
[CrossRef]

E. M. Yeatman, E. A. Ash, “Surface plasmon scanning microscopy,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE897, 100–107 (1988).
[CrossRef]

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Surface plasmon propagation near an index step,” Opt. Commun. 167, 183–189 (1999).
[CrossRef]

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

de Bruijn, H. E.

Greve, J.

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Surface plasmon propagation near an index step,” Opt. Commun. 167, 183–189 (1999).
[CrossRef]

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

H. E. de Bruijn, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426–2430 (1993).
[CrossRef] [PubMed]

Kano, H.

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

H. Kano, S. Mizuguchi, S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
[CrossRef]

H. Kano, W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235–239 (1998).
[CrossRef]

Kawata, S.

Knoll, W.

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

H. Kano, W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235–239 (1998).
[CrossRef]

B. Rothenhäusler, W. Knoll, “Surface-plasmon microsocpy,” Nature 332, 615–617 (1988).
[CrossRef]

Kooyman, R. P. H.

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Surface plasmon propagation near an index step,” Opt. Commun. 167, 183–189 (1999).
[CrossRef]

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

H. E. de Bruijn, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426–2430 (1993).
[CrossRef] [PubMed]

Kretschmann, E.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Mizuguchi, S.

Okamoto, T.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Raether, H.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Rothenhäusler, B.

B. Rothenhäusler, W. Knoll, “Surface-plasmon microsocpy,” Nature 332, 615–617 (1988).
[CrossRef]

Yamaguchi, I.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Yeatman, E.

E. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).
[CrossRef]

Yeatman, E. M.

E. M. Yeatman, E. A. Ash, “Surface plasmon scanning microscopy,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE897, 100–107 (1988).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

E. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

B. Rothenhäusler, W. Knoll, “Surface-plasmon microsocpy,” Nature 332, 615–617 (1988).
[CrossRef]

Opt. Commun. (4)

T. Okamoto, I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

H. Kano, W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235–239 (1998).
[CrossRef]

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Surface plasmon propagation near an index step,” Opt. Commun. 167, 183–189 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. H. Berger, R. P. H. Kooyman, J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

E. M. Yeatman, E. A. Ash, “Surface plasmon scanning microscopy,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE897, 100–107 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the system: (a) schematic diagram, (b) optical arrangement for exciting SPPs by use of a high-N.A. oil-immersion objective lens.

Fig. 2
Fig. 2

Fourier spectra of reflected light: (a) result for incidence of circularly polarized light, (b) result for incidence of linearly polarized light, (c) result when a drop of deionized water was placed at the spot on which the laser was focused upon the silver film.

Fig. 3
Fig. 3

Experimental arrangement for the measurement of step response.

Fig. 4
Fig. 4

Experimental results of the system’s step response: step responses detected by (a) photodetector A, (b) photodetector B, and (c) photodetector D.

Fig. 5
Fig. 5

Experimental setup. (a) Structure of the specimen. A thin silver film of 55-nm thickness was coated by vacuum evaporation on to the coverslip, and a 400-nm-thick photoresist was coated lithographically in a pattern of lines and spaces of 5 μm apart.

Fig. 6
Fig. 6

Images of the lines and spaces of the photoresist: (a), (b), (c), and (d) were reconstructed by use of signals of photodetectors A, B, C, and D, respectively.

Fig. 7
Fig. 7

Relationship between SPP excitation and both the N.A. of the objective lens and the thickness of the specimen backed on the metal thin film. (a) Schematic of the numerical simulation and (b) result of the calculation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ksp=kx,
kx=n sin θ 2πλ.

Metrics