Abstract

By use of a photopolymerization-diffusion model, the diffraction efficiency of photopolymerizable recording dry films prepared from hyperbranched polyisophthalesters as polymeric binders was investigated. The recording characteristics of these films, i.e., spatial frequency, polymeric binder structure, exposure intensity, and modulation depth, are discussed in detail. For a given total exposure dose the diffraction efficiency first increases and then decreases with increasing exposure intensity, and this effect becomes more remarkable as the unsaturated concentration of polymeric binder increases. An optimum total exposure dose of 36 mJ cm-2 and an exposure intensity of 0.4 mW cm-2 were determined. A modulation depth of 1 was found to produce the highest diffraction efficiency. Longer-lasting gratings could be obtained by use of polymeric binders with higher cross-linking densities.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Benjamin, H. Hong, Y. Avny, D. Davidov, R. Neumann, “Poly(phenylene-vinylene) analogs with ring substituted polar side chains and their use in the formation of hydrogen bonding based self-assembled multilayers,” J. Mater. Chem. 8, 919–924 (1998).
    [CrossRef]
  2. I. Banyasz, “Hologram build-up in a near infrared sensitive photopolymer,” Opt. Commun. 181, 215–221 (2000).
    [CrossRef]
  3. C. Garcia, I. Pascual, A. Costela, I. Garcia-Moreno, C. Gomez, A. Fimia, R. Sastre, “Hologram recording in polyvinyl alcohol/acrylamide photopolymers by means of pulsed laser exposure,” Appl. Opt. 41, 2613–2620 (2002).
    [CrossRef] [PubMed]
  4. G. J. Steckman, V. Shelkovnikov, V. Berezhnaya, T. Gerasimova, I. Solomatine, D. Psaltis, “Holographic recording in a photopolymer by optically induced detachment of chromophores,” Opt. Lett. 25, 607–609 (2000).
    [CrossRef]
  5. S. Blaya, L. Carretero, R. F. Madrigal, A. Fimia, “Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry,” Opt. Commun. 173, 423–433 (2000).
    [CrossRef]
  6. I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
    [CrossRef]
  7. K. Curtis, D. Psaltis, “Characterization of the DuPont photopolymer for 3-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
    [CrossRef]
  8. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
    [CrossRef] [PubMed]
  9. H. J. Zhou, V. Morozov, J. Neff, “Characterization of DuPont photopolymers in infrared light for free-space optical interconnects,” Appl. Opt. 34, 7457–7459 (1995).
    [CrossRef] [PubMed]
  10. J. Liu, C. H. Zhao, R. Lee, R. T. Chan, “Cross-link optimized cascaded volume hologram array with energy-equalized one-to-many surface-normal fan-outs,” Opt. Lett. 22, 1024–1026 (1997).
    [CrossRef] [PubMed]
  11. R. R. Adhami, D. L. Lanteigne, D. Gregory, “Photopolymer hologram formation theory,” Microwave Opt. Tech. Lett. 4, 106–109 (1991).
    [CrossRef]
  12. P. Ayräs, J. T. Rantala, S. Honkanen, S. B. Mendes, N. Peyghambarian, “Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,” Opt. Commun. 162, 215–218 (1999).
    [CrossRef]
  13. H. G. Kou, A. Asif, W. F. Shi, “Photopolymerizable acrylated hyperbranched polyisophthalesters used for photorefractive materials,” Eur. Polym. J. 38, 1931–1936 (2002).
    [CrossRef]
  14. R. H. Wopschall, T. R. Pampalone, “Dry photopolymer film for recording holograms,” Appl. Opt. 11, 2096–2097 (1972).
    [CrossRef] [PubMed]
  15. O. P. Jordan, F. Marquis-Weible, “Characterization of photopolymerization by a holographic technique applied to a scattering hydrogel,” Appl. Opt. 35, 6146–6150 (1996).
    [CrossRef] [PubMed]
  16. S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
    [CrossRef]
  17. U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characterizations of the DuPont photopolymer for angularly multiplexed gage-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
    [CrossRef]

2002 (2)

C. Garcia, I. Pascual, A. Costela, I. Garcia-Moreno, C. Gomez, A. Fimia, R. Sastre, “Hologram recording in polyvinyl alcohol/acrylamide photopolymers by means of pulsed laser exposure,” Appl. Opt. 41, 2613–2620 (2002).
[CrossRef] [PubMed]

H. G. Kou, A. Asif, W. F. Shi, “Photopolymerizable acrylated hyperbranched polyisophthalesters used for photorefractive materials,” Eur. Polym. J. 38, 1931–1936 (2002).
[CrossRef]

2000 (3)

G. J. Steckman, V. Shelkovnikov, V. Berezhnaya, T. Gerasimova, I. Solomatine, D. Psaltis, “Holographic recording in a photopolymer by optically induced detachment of chromophores,” Opt. Lett. 25, 607–609 (2000).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, A. Fimia, “Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry,” Opt. Commun. 173, 423–433 (2000).
[CrossRef]

I. Banyasz, “Hologram build-up in a near infrared sensitive photopolymer,” Opt. Commun. 181, 215–221 (2000).
[CrossRef]

1999 (1)

P. Ayräs, J. T. Rantala, S. Honkanen, S. B. Mendes, N. Peyghambarian, “Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,” Opt. Commun. 162, 215–218 (1999).
[CrossRef]

1998 (2)

I. Benjamin, H. Hong, Y. Avny, D. Davidov, R. Neumann, “Poly(phenylene-vinylene) analogs with ring substituted polar side chains and their use in the formation of hydrogen bonding based self-assembled multilayers,” J. Mater. Chem. 8, 919–924 (1998).
[CrossRef]

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

1997 (1)

1996 (2)

1995 (1)

1994 (2)

K. Curtis, D. Psaltis, “Characterization of the DuPont photopolymer for 3-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
[CrossRef]

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

1993 (1)

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characterizations of the DuPont photopolymer for angularly multiplexed gage-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

1991 (1)

R. R. Adhami, D. L. Lanteigne, D. Gregory, “Photopolymer hologram formation theory,” Microwave Opt. Tech. Lett. 4, 106–109 (1991).
[CrossRef]

1972 (1)

Adhami, R. R.

R. R. Adhami, D. L. Lanteigne, D. Gregory, “Photopolymer hologram formation theory,” Microwave Opt. Tech. Lett. 4, 106–109 (1991).
[CrossRef]

Asif, A.

H. G. Kou, A. Asif, W. F. Shi, “Photopolymerizable acrylated hyperbranched polyisophthalesters used for photorefractive materials,” Eur. Polym. J. 38, 1931–1936 (2002).
[CrossRef]

Aubrecht, I.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Avny, Y.

I. Benjamin, H. Hong, Y. Avny, D. Davidov, R. Neumann, “Poly(phenylene-vinylene) analogs with ring substituted polar side chains and their use in the formation of hydrogen bonding based self-assembled multilayers,” J. Mater. Chem. 8, 919–924 (1998).
[CrossRef]

Ayräs, P.

P. Ayräs, J. T. Rantala, S. Honkanen, S. B. Mendes, N. Peyghambarian, “Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,” Opt. Commun. 162, 215–218 (1999).
[CrossRef]

Banyasz, I.

I. Banyasz, “Hologram build-up in a near infrared sensitive photopolymer,” Opt. Commun. 181, 215–221 (2000).
[CrossRef]

Benjamin, I.

I. Benjamin, H. Hong, Y. Avny, D. Davidov, R. Neumann, “Poly(phenylene-vinylene) analogs with ring substituted polar side chains and their use in the formation of hydrogen bonding based self-assembled multilayers,” J. Mater. Chem. 8, 919–924 (1998).
[CrossRef]

Berezhnaya, V.

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, A. Fimia, “Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry,” Opt. Commun. 173, 423–433 (2000).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, A. Fimia, “Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry,” Opt. Commun. 173, 423–433 (2000).
[CrossRef]

Caulfield, H. J.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characterizations of the DuPont photopolymer for angularly multiplexed gage-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Chan, R. T.

Costela, A.

Curtis, K.

Davidov, D.

I. Benjamin, H. Hong, Y. Avny, D. Davidov, R. Neumann, “Poly(phenylene-vinylene) analogs with ring substituted polar side chains and their use in the formation of hydrogen bonding based self-assembled multilayers,” J. Mater. Chem. 8, 919–924 (1998).
[CrossRef]

Fimia, A.

C. Garcia, I. Pascual, A. Costela, I. Garcia-Moreno, C. Gomez, A. Fimia, R. Sastre, “Hologram recording in polyvinyl alcohol/acrylamide photopolymers by means of pulsed laser exposure,” Appl. Opt. 41, 2613–2620 (2002).
[CrossRef] [PubMed]

S. Blaya, L. Carretero, R. F. Madrigal, A. Fimia, “Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry,” Opt. Commun. 173, 423–433 (2000).
[CrossRef]

Garcia, C.

Garcia-Moreno, I.

Gerasimova, T.

Gomez, C.

Gregory, D.

R. R. Adhami, D. L. Lanteigne, D. Gregory, “Photopolymer hologram formation theory,” Microwave Opt. Tech. Lett. 4, 106–109 (1991).
[CrossRef]

Hong, H.

I. Benjamin, H. Hong, Y. Avny, D. Davidov, R. Neumann, “Poly(phenylene-vinylene) analogs with ring substituted polar side chains and their use in the formation of hydrogen bonding based self-assembled multilayers,” J. Mater. Chem. 8, 919–924 (1998).
[CrossRef]

Honkanen, S.

P. Ayräs, J. T. Rantala, S. Honkanen, S. B. Mendes, N. Peyghambarian, “Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,” Opt. Commun. 162, 215–218 (1999).
[CrossRef]

Jordan, O. P.

Kou, H. G.

H. G. Kou, A. Asif, W. F. Shi, “Photopolymerizable acrylated hyperbranched polyisophthalesters used for photorefractive materials,” Eur. Polym. J. 38, 1931–1936 (2002).
[CrossRef]

Koudela, I.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Lanteigne, D. L.

R. R. Adhami, D. L. Lanteigne, D. Gregory, “Photopolymer hologram formation theory,” Microwave Opt. Tech. Lett. 4, 106–109 (1991).
[CrossRef]

Leclere, P. E. L. G.

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Lee, R.

Lion, Y. F.

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Liu, J.

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, A. Fimia, “Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry,” Opt. Commun. 173, 423–433 (2000).
[CrossRef]

Marquis-Weible, F.

Martin, S.

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Mendes, S. B.

P. Ayräs, J. T. Rantala, S. Honkanen, S. B. Mendes, N. Peyghambarian, “Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,” Opt. Commun. 162, 215–218 (1999).
[CrossRef]

Miler, M.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Mirsalehi, M. M.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characterizations of the DuPont photopolymer for angularly multiplexed gage-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Morozov, V.

Neff, J.

Neumann, R.

I. Benjamin, H. Hong, Y. Avny, D. Davidov, R. Neumann, “Poly(phenylene-vinylene) analogs with ring substituted polar side chains and their use in the formation of hydrogen bonding based self-assembled multilayers,” J. Mater. Chem. 8, 919–924 (1998).
[CrossRef]

Pampalone, T. R.

Pascual, I.

Peyghambarian, N.

P. Ayräs, J. T. Rantala, S. Honkanen, S. B. Mendes, N. Peyghambarian, “Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,” Opt. Commun. 162, 215–218 (1999).
[CrossRef]

Psaltis, D.

Pu, A.

Rantala, J. T.

P. Ayräs, J. T. Rantala, S. Honkanen, S. B. Mendes, N. Peyghambarian, “Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,” Opt. Commun. 162, 215–218 (1999).
[CrossRef]

Renotte, Y. L. M.

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Rhee, U. S.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characterizations of the DuPont photopolymer for angularly multiplexed gage-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Sastre, R.

Shamir, J.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characterizations of the DuPont photopolymer for angularly multiplexed gage-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Shelkovnikov, V.

Shi, W. F.

H. G. Kou, A. Asif, W. F. Shi, “Photopolymerizable acrylated hyperbranched polyisophthalesters used for photorefractive materials,” Eur. Polym. J. 38, 1931–1936 (2002).
[CrossRef]

Solomatine, I.

Steckman, G. J.

Toal, V.

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Vikram, C. S.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characterizations of the DuPont photopolymer for angularly multiplexed gage-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Wopschall, R. H.

Zhao, C. H.

Zhou, H. J.

Appl. Opt. (6)

Eur. Polym. J. (1)

H. G. Kou, A. Asif, W. F. Shi, “Photopolymerizable acrylated hyperbranched polyisophthalesters used for photorefractive materials,” Eur. Polym. J. 38, 1931–1936 (2002).
[CrossRef]

J. Mater. Chem. (1)

I. Benjamin, H. Hong, Y. Avny, D. Davidov, R. Neumann, “Poly(phenylene-vinylene) analogs with ring substituted polar side chains and their use in the formation of hydrogen bonding based self-assembled multilayers,” J. Mater. Chem. 8, 919–924 (1998).
[CrossRef]

J. Mod. Opt. (1)

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Microwave Opt. Tech. Lett. (1)

R. R. Adhami, D. L. Lanteigne, D. Gregory, “Photopolymer hologram formation theory,” Microwave Opt. Tech. Lett. 4, 106–109 (1991).
[CrossRef]

Opt. Commun. (3)

P. Ayräs, J. T. Rantala, S. Honkanen, S. B. Mendes, N. Peyghambarian, “Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,” Opt. Commun. 162, 215–218 (1999).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, A. Fimia, “Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry,” Opt. Commun. 173, 423–433 (2000).
[CrossRef]

I. Banyasz, “Hologram build-up in a near infrared sensitive photopolymer,” Opt. Commun. 181, 215–221 (2000).
[CrossRef]

Opt. Eng. (2)

S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characterizations of the DuPont photopolymer for angularly multiplexed gage-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup used for monitoring the growth of holographic diffraction gratings: M, mirrors; other abbreviations defined in text.

Fig. 2
Fig. 2

Molecular structures of HPIPE-100A, HPIPE-50A, and HPIPE-Nap.

Fig. 3
Fig. 3

UV-visible absorption spectra of HPIPE-100A, HPIPE-50A, and HPIPE-Nap (3.5 × 10-3 g L-1 in methanol).

Fig. 4
Fig. 4

Refractive indices of HPIPE-100A, HPIPE-50A, and HPIPE-Nap versus wavelength.

Fig. 5
Fig. 5

Diffraction efficiency of HPIPE-100A/MA film versus exposure time at several spatial frequencies.

Fig. 6
Fig. 6

Linear relationship between diffraction time and square of the diffusion distance.

Fig. 7
Fig. 7

Diffraction efficiency versus exposure time at an exposure intensity of 0.4 mW cm-2.

Fig. 8
Fig. 8

Diffraction efficiency versus storage time after final exposure of the film to uniform light.

Fig. 9
Fig. 9

Saturation diffraction efficiency versus exposure intensity at a total exposure dose of 36 mJ cm-2.

Fig. 10
Fig. 10

Diffraction efficiency of HPIPE-100A/MA film versus exposure time for several beam intensity ratios at a total exposure intensity of 0.4 mW cm-2.

Tables (1)

Tables Icon

Table 1 Number Average Molecular Weights, Unsaturated Concentrations, and Refractive Indices of Hyperbranched Polyisophthalesters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tD=L2/D,
DE=sin2πdΔn/λcosθ,
M=2κ1+κ,

Metrics