Abstract

We report a method for passive optical directional discrimination in laser-Doppler anemometers. For this purpose frequency-shift elements such as acousto-optic modulators, which are bulky and difficult to align during assembly, have traditionally been employed. We propose to use a quadrature homodyne technique to achieve directional discrimination of the fluid flow without any frequency-shift elements. It is based on the employment of two laser wavelengths, which generate two interference fringe systems with a phase shift of a quarter of the common fringe spacing. Measurement signal pairs with a direction-dependent phase shift of ±π/2 are generated. As a robust signal-processing technique, the cross-correlation technique is used. The principles of quadrature homodyne laser-Doppler anemometry are investigated. A setup that provides a constant phase shift of π/2 throughout the entire measurement volume was achieved with both single-mode and multimode radiation. The directional discrimination was successfully verified with wind tunnel measurements. The complete passive technique offers the potential of building miniaturized measurement heads that can be integrated, e.g., into wind tunnel models.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).
  2. H.-E. Albrecht, M. Borys, N. Damaschke, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, Berlin, 2003).
    [CrossRef]
  3. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood,” Appl. Opt. 33, 5628–5641 (1994).
    [CrossRef] [PubMed]
  4. H. W. Jentink, M. Stiegelmeier, C. Tropea, “In-flight measurements using laser Doppler anemometry,” J. Aircr. 31, 444–446 (1993).
    [CrossRef]
  5. C. Egbers, W. Brasch, B. Sitte, J. Immohr, J. R. Schmidt, “Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space,” Meas. Sci. Technol. 10, 866–877 (1999).
    [CrossRef]
  6. S. Damp, “Use of modified miniature-LDA in high spatial resolution application,” in Proceedings of the International Congress on Instrumentation in Aerospace Simulation Facilities (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21.1–21.5.
  7. F. Leopold, E. Augenstein, S. Damp, F. Christmacher, E. Bacher, “LDA measurements and visualization of the supersonic flow around a longitudinal cylinder with different surface roughnesses,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 2.3.1–2.3.8.
  8. T. Iko, R. Sawada, E. Higurashi, “Integrated microlaser Doppler velocimeter,” J. Lightwave Technol. 17, 30–34 (1999).
    [CrossRef]
  9. H. Nishihara, K. Matsumoto, J. Koyama, “Use of a laser diode and an optical fiber for a compact laser-Doppler velocimeter,” Opt. Lett. 9, 62–64 (1984).
    [CrossRef] [PubMed]
  10. M. Stiegelmeier, C. Tropea, “Mobile fiber-optic laser Doppler anemometer,” Appl. Opt. 31, 4096–4105 (1992).
    [CrossRef]
  11. J. Czarske, “A miniaturized dual-fibre laser Doppler sensor,” Meas. Sci. Technol. 12, 1191–1198 (2001).
    [CrossRef]
  12. L. Büttner, J. Czarske, “A multimode-fibre laser-Doppler anemometer for highly spatially resolved velocity measurements using low-coherence light,” Meas. Sci. Technol. 12, 1891–1903 (2001).
    [CrossRef]
  13. P. Miles, P. Witze, “Evaluation of the Gaussian beam model for prediction of LDV fringe fields,” in Proceedings of the International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1996), pp. 40.1.1–40.1.8.
  14. J. Czarske, F. Hock, H. Müller, “Applications of diffraction gratings in the laser Doppler velocimetry,” in 16th Congress of the International Commission for Optics: Optics As a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 654–655 (1993).
  15. E. B. Li, A. K. Tieu, “Analysis of the three-dimensional fringe pattern formed by the interference of ideal and astigmatic Gaussian beams,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 15.5.1–15.5.6.
  16. Melles Griot Optics catalog (Melles Griot, Carlsbad, Calif., 1999).

2001 (2)

J. Czarske, “A miniaturized dual-fibre laser Doppler sensor,” Meas. Sci. Technol. 12, 1191–1198 (2001).
[CrossRef]

L. Büttner, J. Czarske, “A multimode-fibre laser-Doppler anemometer for highly spatially resolved velocity measurements using low-coherence light,” Meas. Sci. Technol. 12, 1891–1903 (2001).
[CrossRef]

1999 (2)

C. Egbers, W. Brasch, B. Sitte, J. Immohr, J. R. Schmidt, “Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space,” Meas. Sci. Technol. 10, 866–877 (1999).
[CrossRef]

T. Iko, R. Sawada, E. Higurashi, “Integrated microlaser Doppler velocimeter,” J. Lightwave Technol. 17, 30–34 (1999).
[CrossRef]

1994 (1)

1993 (1)

H. W. Jentink, M. Stiegelmeier, C. Tropea, “In-flight measurements using laser Doppler anemometry,” J. Aircr. 31, 444–446 (1993).
[CrossRef]

1992 (1)

1984 (1)

Aarnoudse, J. G.

Albrecht, H.-E.

H.-E. Albrecht, M. Borys, N. Damaschke, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, Berlin, 2003).
[CrossRef]

Augenstein, E.

F. Leopold, E. Augenstein, S. Damp, F. Christmacher, E. Bacher, “LDA measurements and visualization of the supersonic flow around a longitudinal cylinder with different surface roughnesses,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 2.3.1–2.3.8.

Bacher, E.

F. Leopold, E. Augenstein, S. Damp, F. Christmacher, E. Bacher, “LDA measurements and visualization of the supersonic flow around a longitudinal cylinder with different surface roughnesses,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 2.3.1–2.3.8.

Borys, M.

H.-E. Albrecht, M. Borys, N. Damaschke, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, Berlin, 2003).
[CrossRef]

Brasch, W.

C. Egbers, W. Brasch, B. Sitte, J. Immohr, J. R. Schmidt, “Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space,” Meas. Sci. Technol. 10, 866–877 (1999).
[CrossRef]

Büttner, L.

L. Büttner, J. Czarske, “A multimode-fibre laser-Doppler anemometer for highly spatially resolved velocity measurements using low-coherence light,” Meas. Sci. Technol. 12, 1891–1903 (2001).
[CrossRef]

Christmacher, F.

F. Leopold, E. Augenstein, S. Damp, F. Christmacher, E. Bacher, “LDA measurements and visualization of the supersonic flow around a longitudinal cylinder with different surface roughnesses,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 2.3.1–2.3.8.

Czarske, J.

L. Büttner, J. Czarske, “A multimode-fibre laser-Doppler anemometer for highly spatially resolved velocity measurements using low-coherence light,” Meas. Sci. Technol. 12, 1891–1903 (2001).
[CrossRef]

J. Czarske, “A miniaturized dual-fibre laser Doppler sensor,” Meas. Sci. Technol. 12, 1191–1198 (2001).
[CrossRef]

J. Czarske, F. Hock, H. Müller, “Applications of diffraction gratings in the laser Doppler velocimetry,” in 16th Congress of the International Commission for Optics: Optics As a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 654–655 (1993).

Damaschke, N.

H.-E. Albrecht, M. Borys, N. Damaschke, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, Berlin, 2003).
[CrossRef]

Damp, S.

F. Leopold, E. Augenstein, S. Damp, F. Christmacher, E. Bacher, “LDA measurements and visualization of the supersonic flow around a longitudinal cylinder with different surface roughnesses,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 2.3.1–2.3.8.

S. Damp, “Use of modified miniature-LDA in high spatial resolution application,” in Proceedings of the International Congress on Instrumentation in Aerospace Simulation Facilities (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21.1–21.5.

Dassel, A. C. M.

de Mul, F. F. M.

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

Egbers, C.

C. Egbers, W. Brasch, B. Sitte, J. Immohr, J. R. Schmidt, “Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space,” Meas. Sci. Technol. 10, 866–877 (1999).
[CrossRef]

Graaff, R.

Greve, J.

Higurashi, E.

Hock, F.

J. Czarske, F. Hock, H. Müller, “Applications of diffraction gratings in the laser Doppler velocimetry,” in 16th Congress of the International Commission for Optics: Optics As a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 654–655 (1993).

Iko, T.

Immohr, J.

C. Egbers, W. Brasch, B. Sitte, J. Immohr, J. R. Schmidt, “Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space,” Meas. Sci. Technol. 10, 866–877 (1999).
[CrossRef]

Jentink, H. W.

H. W. Jentink, M. Stiegelmeier, C. Tropea, “In-flight measurements using laser Doppler anemometry,” J. Aircr. 31, 444–446 (1993).
[CrossRef]

Koelink, M. H.

Koyama, J.

Leopold, F.

F. Leopold, E. Augenstein, S. Damp, F. Christmacher, E. Bacher, “LDA measurements and visualization of the supersonic flow around a longitudinal cylinder with different surface roughnesses,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 2.3.1–2.3.8.

Li, E. B.

E. B. Li, A. K. Tieu, “Analysis of the three-dimensional fringe pattern formed by the interference of ideal and astigmatic Gaussian beams,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 15.5.1–15.5.6.

Matsumoto, K.

Miles, P.

P. Miles, P. Witze, “Evaluation of the Gaussian beam model for prediction of LDV fringe fields,” in Proceedings of the International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1996), pp. 40.1.1–40.1.8.

Müller, H.

J. Czarske, F. Hock, H. Müller, “Applications of diffraction gratings in the laser Doppler velocimetry,” in 16th Congress of the International Commission for Optics: Optics As a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 654–655 (1993).

Nishihara, H.

Sawada, R.

Schmidt, J. R.

C. Egbers, W. Brasch, B. Sitte, J. Immohr, J. R. Schmidt, “Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space,” Meas. Sci. Technol. 10, 866–877 (1999).
[CrossRef]

Sitte, B.

C. Egbers, W. Brasch, B. Sitte, J. Immohr, J. R. Schmidt, “Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space,” Meas. Sci. Technol. 10, 866–877 (1999).
[CrossRef]

Stiegelmeier, M.

H. W. Jentink, M. Stiegelmeier, C. Tropea, “In-flight measurements using laser Doppler anemometry,” J. Aircr. 31, 444–446 (1993).
[CrossRef]

M. Stiegelmeier, C. Tropea, “Mobile fiber-optic laser Doppler anemometer,” Appl. Opt. 31, 4096–4105 (1992).
[CrossRef]

Tieu, A. K.

E. B. Li, A. K. Tieu, “Analysis of the three-dimensional fringe pattern formed by the interference of ideal and astigmatic Gaussian beams,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 15.5.1–15.5.6.

Tropea, C.

H. W. Jentink, M. Stiegelmeier, C. Tropea, “In-flight measurements using laser Doppler anemometry,” J. Aircr. 31, 444–446 (1993).
[CrossRef]

M. Stiegelmeier, C. Tropea, “Mobile fiber-optic laser Doppler anemometer,” Appl. Opt. 31, 4096–4105 (1992).
[CrossRef]

H.-E. Albrecht, M. Borys, N. Damaschke, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, Berlin, 2003).
[CrossRef]

Weijers, A. L.

Witze, P.

P. Miles, P. Witze, “Evaluation of the Gaussian beam model for prediction of LDV fringe fields,” in Proceedings of the International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1996), pp. 40.1.1–40.1.8.

Appl. Opt. (2)

J. Aircr. (1)

H. W. Jentink, M. Stiegelmeier, C. Tropea, “In-flight measurements using laser Doppler anemometry,” J. Aircr. 31, 444–446 (1993).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (3)

C. Egbers, W. Brasch, B. Sitte, J. Immohr, J. R. Schmidt, “Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space,” Meas. Sci. Technol. 10, 866–877 (1999).
[CrossRef]

J. Czarske, “A miniaturized dual-fibre laser Doppler sensor,” Meas. Sci. Technol. 12, 1191–1198 (2001).
[CrossRef]

L. Büttner, J. Czarske, “A multimode-fibre laser-Doppler anemometer for highly spatially resolved velocity measurements using low-coherence light,” Meas. Sci. Technol. 12, 1891–1903 (2001).
[CrossRef]

Opt. Lett. (1)

Other (8)

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

H.-E. Albrecht, M. Borys, N. Damaschke, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, Berlin, 2003).
[CrossRef]

S. Damp, “Use of modified miniature-LDA in high spatial resolution application,” in Proceedings of the International Congress on Instrumentation in Aerospace Simulation Facilities (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21.1–21.5.

F. Leopold, E. Augenstein, S. Damp, F. Christmacher, E. Bacher, “LDA measurements and visualization of the supersonic flow around a longitudinal cylinder with different surface roughnesses,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 2.3.1–2.3.8.

P. Miles, P. Witze, “Evaluation of the Gaussian beam model for prediction of LDV fringe fields,” in Proceedings of the International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1996), pp. 40.1.1–40.1.8.

J. Czarske, F. Hock, H. Müller, “Applications of diffraction gratings in the laser Doppler velocimetry,” in 16th Congress of the International Commission for Optics: Optics As a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 654–655 (1993).

E. B. Li, A. K. Tieu, “Analysis of the three-dimensional fringe pattern formed by the interference of ideal and astigmatic Gaussian beams,” in Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (n.p, Lisbon, Portugal, 1998), pp. 15.5.1–15.5.6.

Melles Griot Optics catalog (Melles Griot, Carlsbad, Calif., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Left, bichromatic LDA measurement volume with a shift of a quarter of the common fringe spacing. Right, quadrature (sine-cosine) burst signal pair containing information about the direction of a passing particle.

Fig. 2
Fig. 2

Fringe spacing curves for (a) identical crossing angles, (b) matched crossing angles and identical beam waist radii, and (c) matched crossing angles and matched beam waist radii.

Fig. 3
Fig. 3

Experimental setup of the quadrature homodyne LDA with single-mode laser diodes.

Fig. 4
Fig. 4

Signal amplitude of the two measurement volumes determined by means of the FFT peak height. There is good overlap. The shift of ∼10 μm between the maximum positions can be ignored.

Fig. 5
Fig. 5

Determination of beam waist positions with respect to crossing planes by use of beam-to-beam distance curves and caustic curves. The zero crossings of the beam distance curves define the position of the center of the measurement volumes. Good coincidence with the beam waist positions occurs.

Fig. 6
Fig. 6

Dependence of fringe spacing on position along the optical axis inside the 1/e 2 borders of the measurement volume.

Fig. 7
Fig. 7

Relative phases of burst signals inside the measurement volume. The phase is constant, with a mean value of 87° ± 2°.

Fig. 8
Fig. 8

Test of directional discrimination in a wind tunnel. The sensor was oriented in both directions with respect to the fluid flow. Each of the histograms shown contains 2 × 103 evaluated burst signal pairs.

Fig. 9
Fig. 9

Experimental setup of the QH-LDA with multimode radiation.

Fig. 10
Fig. 10

Results from the QH-LDA with multimode radiation. (a) Sine-cosine signal pair, (b) phase shift within the measurement volume.

Fig. 11
Fig. 11

Dependence of phase shift on wavelength when one or two glass plates are used.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

dz=λ2 sin α1+z2 cos2 αzR2,
sin α1λ1=sin α2λ2.
sin θ=λ/g.
dz=0=βg/2.
w02=w01λ2 cos α2λ1 cos α11/2,
w02=w01λ2/λ1.
Δφ=2πf2-f1τ.
Δφ=2π1d2-1d12w0<π.
Δφ=2π Dλn-1.
ΔφΔφ2-Δφ1=2πDn2-1λ2-n1-1λ1,
Δφ=2πD2-D1n2-1λ2-n1-1λ1.

Metrics