Abstract

The Monte Carlo method has been applied to numerical modeling of an integrating sphere designed for hemispherical-directional reflectance factor measurements. It is shown that a conventional algorithm of backward ray tracing used for estimation of characteristics of the radiation field at a given point has slow convergence for small source-to-sphere-diameter ratios. A newly developed algorithm that substantially improves the convergence by calculation of direct source-induced irradiation for every point of diffuse reflection of rays traced is described. The method developed is applied to an integrating sphere reflectometer for the visible and infrared spectral ranges. Parametric studies of hemispherical radiance distributions for radiation incident onto the sample center were performed. The deviations of measured sample reflectance from the actual reflectance as a result of various factors were computed. The accuracy of the results, adequacy of the reflectance model, and other important aspects of the algorithm implementation are discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription