Abstract

A new scanning mechanism for changing long optical paths is proposed. This mechanism consists of corner reflectors arranged equally upon a disk and an outer mirror. Rotating the 120-mmϕ disk cases a long-optical-path change in each reflector with a near linearity of more than 40 mm. An optical coherence tomography system is described that confirms the usefulness of the proposed mechanism. Its operating characteristics and accuracy are evaluated by analysis and experiment. The deviation of the optical-path change is less than 1.52% at a reflector rotation angle of ±10°. A high-speed lock-in amplifier is utilized for fundamental measurements of glass samples.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Danielson, C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, “Femtosecond optical ranging in biological systems,” Opt. Lett. 11, 150–152 (1986).
    [CrossRef] [PubMed]
  3. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Quantum Electron. 5, 1176–1184 (1999).
    [CrossRef]
  4. J. I. Burov, D. V. Ivanov, “Multibeam interferometric method for measuring very small periodic displacements,” Appl. Opt. 28, 3343–3338 (1989).
    [CrossRef] [PubMed]
  5. J. A. Izatt, M. R. Hee, G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
    [CrossRef] [PubMed]
  6. Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1134–1142 (1999).
    [CrossRef]
  7. A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
    [CrossRef]
  8. J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
    [CrossRef]
  9. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Quantum Electron. 2, 1017–1028 (1996).
    [CrossRef]
  10. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  12. C. B. Su, “Achieving variation of the optical path length by few millimeters at millisecond rates for imaging of turbid media and optical interferometry: a new technique,” Opt. Lett. 22, 665–667 (1997).
    [CrossRef] [PubMed]
  13. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1913 (1997).
    [CrossRef]
  14. M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Quantum Electron. 5, 1185–1192 (1999).
    [CrossRef]

1999 (6)

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
[CrossRef]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Quantum Electron. 5, 1185–1192 (1999).
[CrossRef]

1997 (2)

1996 (1)

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

1994 (1)

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

B. L. Danielson, C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
[CrossRef] [PubMed]

1989 (1)

1986 (1)

Boisrobert, C. Y.

Bouma, B. E.

Brezinski, M. E.

M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Quantum Electron. 5, 1185–1192 (1999).
[CrossRef]

Burov, J. I.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z. P.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
[CrossRef]

Danielson, B. L.

De Silvestri, S.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Frostig, R. D.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

Fujimoto, J. G.

M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Quantum Electron. 5, 1185–1192 (1999).
[CrossRef]

G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1913 (1997).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, “Femtosecond optical ranging in biological systems,” Opt. Lett. 11, 150–152 (1986).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Ivanov, D. V.

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

J. A. Izatt, M. R. Hee, G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

Jackson, D. A.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Kimel, S.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Major, A.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Mee, S.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Milner, T. E.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
[CrossRef]

Nelson, J. S.

J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
[CrossRef]

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

Owen, G. M.

Park, B. H.

J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
[CrossRef]

Pham, T. H.

J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
[CrossRef]

Podoleanu, A. G.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Prakash, N.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rogers, J. A.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Shyam, J. F. de B.

J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
[CrossRef]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Smithies, D. J.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Srinivas, M.

J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
[CrossRef]

Srinivas, S. M.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Su, C. B.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Wang, H.-W.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Zhao, Y. H.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (7)

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. P. Chen, J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

J. F. de B. Shyam, M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Quantum Electron. 5, 1200–1203 (1999).
[CrossRef]

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Quantum Electron. 5, 1185–1192 (1999).
[CrossRef]

Opt. Lett. (4)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Long-optical-path scanning mechanism. (b) Derivation of the optical-path difference. θ, s, and r are the disk rotation angle, the distance between the incident beam and the center of a corner reflector, and the disk radius, respectively. The reflectors are equally spaced on the rotating disk.

Fig. 2
Fig. 2

Operating characteristics of the long-optical-path scanning mechanism. (a) Optical-path change relative to disk rotation angle. The deviation is less than 1.52%. (b) Deviation of the Doppler frequency relative to disk rotation angle. The Doppler frequency depends on the speed of the optical-path change. Disk radius r is 60 mm, distance s is 3 mm, and wavelength λ0 is 840 nm.

Fig. 3
Fig. 3

Schematic diagram of the OCT system with the long-path-scanning mechanism. Two interferometers are included in the system: One is for measurement and the other produces the reference signal of a lock-in amplifier. Fifteen corner reflectors can be arranged on a 120-mmϕ disk. The maximum repetition is 15 scans/s at a disk rotation rate of 60 rpm.

Fig. 4
Fig. 4

Interference signals obtained by the OCT system described here (a) LD signal, (b) SLD signal. The optical signals are depicted upside down by a inverse amplifier. Interference fringes (Doppler frequency) at the center of the trapezoid were 13.6kHz for both (a) and (b). PD, photodiode.

Fig. 5
Fig. 5

Fundamental measurement of the OCT system. Sample targets were (a) a layer structure of six slide glasses and (b) an intervallic object consisting of a mirror and a slide glass. These traces were obtained during a single scan of a reflector. Constant and long-optical-path changes of more than tens of millimeters could be achieved by this OCT system with a lock-in amplifier.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

lν=2l1+l21-sin 2θ-2s, l1=r+ssin θ-r+s1-cos θtanπ/4θ, l2=2scosπ/4θ+2r+s1-cos θcos2θ,

Metrics