Abstract

Various points were raised in a comment [Ferrari and Dubra, Appl. Opt. 42, 3754–3755 (2003)] in response to our original publication [Harvey and Kyrwonos, Appl. Opt. 41, 3790–3795 (2002)]. We have reviewed these and present our reply.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Ferrari, A. Dubra, “Axial irradiance distribution throughout the whole space behind an annular aperture: comment,” Appl. Opt. 42, 3754–3755 (2003).
    [CrossRef]
  2. J. E. Harvey, A. Krywonos, “Axial irradiance distribution throughout the whole space behind an annular aperture,” Appl. Opt. 41, 3790–3795 (2002).
    [CrossRef] [PubMed]
  3. A. Dubra, J. A. Ferrari, “Diffracted field by an arbitrary aperture,” Am. J. Phys. 67, 87–92 (1999).
    [CrossRef]
  4. H. Osterberg, L. W. Smith, “Closed solutions of Rayleigh’s integral for axial points,” J. Opt. Soc. Am. 51, 1050–1054 (1961).
    [CrossRef]
  5. G. D. Hutton, “An exact solution for the on-axis amplitude of a circular symmetric aperture function,” Opt. Commun. 37, 379–382 (1981).
    [CrossRef]

2003 (1)

2002 (1)

1999 (1)

A. Dubra, J. A. Ferrari, “Diffracted field by an arbitrary aperture,” Am. J. Phys. 67, 87–92 (1999).
[CrossRef]

1981 (1)

G. D. Hutton, “An exact solution for the on-axis amplitude of a circular symmetric aperture function,” Opt. Commun. 37, 379–382 (1981).
[CrossRef]

1961 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (14)

Equations on this page are rendered with MathJax. Learn more.

U2x2, y2=Aiλ-- U1x1, y1expikll×cosn, ldx1dy1
N=D24λz  1.
U2x2, y2=Aλ-- U1x1, y11kl-i× expikllcosn, ldx1dy1.
U20, 0; z=Az n=0n!l-n+1iknexpiklzbza-Azn=1n!l-n+1iknexpiklzbza, 
a=1+D2/4z2, b=1+d2/4z2.
U20, 0; z=-Az expikllzbza=Az expikzbzb-expikzaza.
U20, 0; z=A r=d/2D/2expikll2zl rdr-Aik r=d/2D/2expikllzl rdr,
l2=z2+r2,
U20, 0; z=Az l=zbzaexpikll2dl-Aikz l=zbzaexpiklldl
 u dv=uv- v du,
u=l-1, dv=expikldl, du=-l-2dl, v=expikl/ik.
U20, 0; z=Az l=zbzaexpikll2dl-Az expikllzbza-Az l=zbzaexpikll2dl.
U20, 0; z=-Az expikllzbza=Azexpikzbzb-expikzaza.
U20, 0; z=-Az expikllzza=Azexpikzz-expikzaza.

Metrics