Abstract

The temperature dependences of spontaneous Brillouin and Rayleigh scattering intensities in a dispersion-shifted fiber have been measured over a wide temperature range by optical-time-domain reflectometry. It was found that spontaneous Brillouin and Rayleigh intensities normalized by room-temperature values have linear dependences on temperature, with coefficients (0.26 ± 0.02)%/°C and (0.015 ± 0.002)%/°C in temperature ranges -27–819 and 29–827 °C, respectively. Experimental results have demonstrated that both kinds of scattering can be used for distributed high-temperature measurement.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–914 (1989).
    [CrossRef]
  2. S. M. Maughan, H. H. Kee, T. P. Newson, “57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
    [CrossRef]
  3. K. Hotate, M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
    [CrossRef]
  4. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
    [CrossRef]
  5. S. M. Maughan, H. H. Kee, T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
    [CrossRef]
  6. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–389 (1993).
  7. K. De Souza, P. C. Wait, T. P. Newson, “Double-pass configured fibre Mach-Zehnder interferometric optical filter for distributed fibre sensing,‘ Electron. Lett. 33, 2148–2149 (1997).
    [CrossRef]
  8. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
    [CrossRef] [PubMed]
  9. J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Reidel, Dordrecht, The Netherlands, 1984).
    [CrossRef]
  10. T. Shiota, H. Hidaka, O. Fukuda, K. Inada, “High-temperature effects of aluminum-coated fiber,” J. Lightwave Technol. LT-4, 1151–1156 (1986).
    [CrossRef]
  11. M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55, 4052–4057 (1984).
    [CrossRef]
  12. J. A. Bucaro, H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45, 5324–5329 (1974).
    [CrossRef]

2002 (1)

K. Hotate, M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[CrossRef]

2001 (2)

S. M. Maughan, H. H. Kee, T. P. Newson, “57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
[CrossRef]

S. M. Maughan, H. H. Kee, T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

1997 (3)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

K. De Souza, P. C. Wait, T. P. Newson, “Double-pass configured fibre Mach-Zehnder interferometric optical filter for distributed fibre sensing,‘ Electron. Lett. 33, 2148–2149 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–389 (1993).

1989 (1)

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–914 (1989).
[CrossRef]

1986 (1)

T. Shiota, H. Hidaka, O. Fukuda, K. Inada, “High-temperature effects of aluminum-coated fiber,” J. Lightwave Technol. LT-4, 1151–1156 (1986).
[CrossRef]

1984 (1)

M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55, 4052–4057 (1984).
[CrossRef]

1974 (1)

J. A. Bucaro, H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45, 5324–5329 (1974).
[CrossRef]

Bucaro, J. A.

J. A. Bucaro, H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45, 5324–5329 (1974).
[CrossRef]

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–914 (1989).
[CrossRef]

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45, 5324–5329 (1974).
[CrossRef]

De Souza, K.

K. De Souza, P. C. Wait, T. P. Newson, “Double-pass configured fibre Mach-Zehnder interferometric optical filter for distributed fibre sensing,‘ Electron. Lett. 33, 2148–2149 (1997).
[CrossRef]

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–914 (1989).
[CrossRef]

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

Fukuda, O.

T. Shiota, H. Hidaka, O. Fukuda, K. Inada, “High-temperature effects of aluminum-coated fiber,” J. Lightwave Technol. LT-4, 1151–1156 (1986).
[CrossRef]

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–389 (1993).

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Hidaka, H.

T. Shiota, H. Hidaka, O. Fukuda, K. Inada, “High-temperature effects of aluminum-coated fiber,” J. Lightwave Technol. LT-4, 1151–1156 (1986).
[CrossRef]

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–389 (1993).

Hotate, K.

K. Hotate, M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[CrossRef]

Inada, K.

T. Shiota, H. Hidaka, O. Fukuda, K. Inada, “High-temperature effects of aluminum-coated fiber,” J. Lightwave Technol. LT-4, 1151–1156 (1986).
[CrossRef]

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–389 (1993).

Jackson, D. A.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–914 (1989).
[CrossRef]

Kee, H. H.

S. M. Maughan, H. H. Kee, T. P. Newson, “57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
[CrossRef]

S. M. Maughan, H. H. Kee, T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–389 (1993).

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–389 (1993).

Lines, M. E.

M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55, 4052–4057 (1984).
[CrossRef]

Maughan, S. M.

S. M. Maughan, H. H. Kee, T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

S. M. Maughan, H. H. Kee, T. P. Newson, “57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
[CrossRef]

Newson, T. P.

S. M. Maughan, H. H. Kee, T. P. Newson, “57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
[CrossRef]

S. M. Maughan, H. H. Kee, T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

K. De Souza, P. C. Wait, T. P. Newson, “Double-pass configured fibre Mach-Zehnder interferometric optical filter for distributed fibre sensing,‘ Electron. Lett. 33, 2148–2149 (1997).
[CrossRef]

Pannell, C. N.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–914 (1989).
[CrossRef]

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

Perina, J.

J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Reidel, Dordrecht, The Netherlands, 1984).
[CrossRef]

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Shiota, T.

T. Shiota, H. Hidaka, O. Fukuda, K. Inada, “High-temperature effects of aluminum-coated fiber,” J. Lightwave Technol. LT-4, 1151–1156 (1986).
[CrossRef]

Tanaka, M.

K. Hotate, M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[CrossRef]

Wait, P. C.

K. De Souza, P. C. Wait, T. P. Newson, “Double-pass configured fibre Mach-Zehnder interferometric optical filter for distributed fibre sensing,‘ Electron. Lett. 33, 2148–2149 (1997).
[CrossRef]

Electron. Lett. (2)

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–914 (1989).
[CrossRef]

K. De Souza, P. C. Wait, T. P. Newson, “Double-pass configured fibre Mach-Zehnder interferometric optical filter for distributed fibre sensing,‘ Electron. Lett. 33, 2148–2149 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Hotate, M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–389 (1993).

J. Appl. Phys. (2)

M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55, 4052–4057 (1984).
[CrossRef]

J. A. Bucaro, H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45, 5324–5329 (1974).
[CrossRef]

J. Lightwave Technol. (1)

T. Shiota, H. Hidaka, O. Fukuda, K. Inada, “High-temperature effects of aluminum-coated fiber,” J. Lightwave Technol. LT-4, 1151–1156 (1986).
[CrossRef]

Meas. Sci. Technol. (1)

S. M. Maughan, H. H. Kee, T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

Opt. Lett. (2)

Other (1)

J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Reidel, Dordrecht, The Netherlands, 1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for measuring the temperature dependence of spontaneous Brillouin scattering intensity: LD, laser diode; AOM, acousto-optic modulator; FG, fiber grating; C1–C3, 3-dB couplers; PZT, piezoelectric ceramic cylinder; ISO, isolator; R, Rayleigh scattering; B, spontaneous Brillouin scattering; PD, photodetector-amplifier module; Amp, amplifier.

Fig. 2
Fig. 2

OTDR waveforms of spontaneous BS in the first heating run.

Fig. 3
Fig. 3

Temperature dependence of the normalized spontaneous BS intensity: filled squares, first heating run; filled triangles, second heating run; solid curve, linear fit of second heating run.

Fig. 4
Fig. 4

OTDR waveforms of RS in the first heating run.

Fig. 5
Fig. 5

Temperature dependence of the normalized RS intensity: filled squares, first heating run; filled triangles, second heating run; solid curve, linear fit of second heating run.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

YBT=0.2134+0.0026T T=K.
YRT=0.9574+0.00015T T=K.

Metrics