Abstract

In a previous publication [Jellison and Modine, Appl. Opt. 36, 8190–8198 (1997)], three points of information were presented inaccurately. These inaccuracies are corrected here.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Jellison, F. A. Modine, “Two-modulator generalized ellipsometry: theory,” Appl. Opt. 36, 8190–8198 (1997).
    [CrossRef]

1997 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M = I dc σ 0 s I Y 0 · I X 0 σ 1 s I Y 1 σ 0 s 1 s I Y 0 Y 1 · σ 1 s I X 0 Y 1 · · · · - I X 1 - σ 0 s I Y 0 X 1 · - I X 0 X 1 .
M = I dc σ 0 s I Y 0 · I X 0 · · · · - σ 1 c I Y 1 - σ 0 s 1 c I Y 0 Y 1 · - σ 1 c I X 0 Y 1 - I X 1 - σ 0 s I Y 0 X 1 · - I X 0 X 1 .
M = I dc · - σ 0 c I Y 0 I X 0 σ 1 s I Y 1 · - σ 0 c 1 s I Y 0 Y 1 σ 1 s I X 0 Y 1 · · · · - I X 1 · σ 0 c I Y 0 X 1 - I X 0 X 1 .
M = I dc · - σ 0 c I Y 0 I X 0 · · · · - σ 1 c I Y 1 · σ 0 c 1 c I Y 0 Y 1 - σ 1 c I X 0 Y 1 - I X 1 · σ 0 c I Y 0 X 1 - I X 0 X 1 .
A = 1 0 0 1 1 0 0 - 1 0 1 1 0 0 i - i 0 .
β 2 = - D / 2 C sp S ps - S sp C ps ,
ζ 2 = - D / 2 CS ps - SC ps .

Metrics