Abstract

A discrete-component approach was taken to establish the operational feasibility of a novel, imaging, midinfrared, multispectral, polarimetric sensor for remote-sensing application. The sensor is designed to exploit the spectral and polarimetric characteristics of the scene as discriminants. Pixelated multispectral filters and polarization filters were designed and fabricated on sapphire and Si substrates, respectively, and both were characterized. A single-pixel spectropolarimetric composite filter was characterized by use of a Fourier transform infrared spectrometer and a Pt-Si thermal-imaging camera. The experimental results show excellent agreement with theoretical predictions.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Tooley.“Man-made target detection using infrared polarization,” in Polarization Considerations for Optical Systems II, R.A. Chipman, ed., Proc. SPIE1166, 52–58 (1989).
    [CrossRef]
  2. T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signature,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
    [CrossRef]
  3. T. J. Rogne, R. Maxwell, J. Nicoll, R. Legault, “IR polarization for target cuing,” in Proceedings of IRIS Passive Sensors (ERIM International Inc., Ann Arbor, Mich., 1997), pp. 323–340.
  4. M. J. Duggin, W. G. Egan, J. Gregory, “Measurements of polarization of targets of differing albedo and shadow depth,” in Targets and Backgrounds: Characterization and Representation V, W.R. Watkins, D. Clement, W.R. Reynolds, eds., Proc. SPIE3699, 27–37 (1999).
    [CrossRef]
  5. W. G. Egan, “Enhancement of optical detectability with polarization,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 38–48 (1999).
    [CrossRef]
  6. W. G. Egan, “Proposed design of an imaging spectropolarimeter/photopolarimeter for remote sensing of earth resources,” Opt. Eng. 25, 1155–1159 (1986).
    [CrossRef]
  7. L. D. Travis, “Remote sensing of aerosols with the Earth Observing Scanning Polarimeter,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 154–164 (1992).
    [CrossRef]
  8. B. H. Miles, E. R. Cespedes, R. A. Goodson, “Polarization-based active/passive scanning system for minefield detection,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 239–252 (1992).
    [CrossRef]
  9. D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground-based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–103 (1992).
    [CrossRef]
  10. H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near-infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
    [CrossRef]
  11. P. Y. Deschamps, M. Herman, A. Podaire, A. Ratier, “The POLDER Instrument: mission objectives,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 72–91 (1992).
    [CrossRef]
  12. K. P. Bishop, H. D. McIntire, M. P. Fetrow, L. McMackin, “Multi-spectral polarimeter imaging in the visible to near IR,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 49–57 (1999).
    [CrossRef]
  13. D. B. Chenault, R. A. Chipman, “Infrared spectropolarimetry,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE1166, 254–266 (1989).
    [CrossRef]
  14. J. L. Pezzaniti, R. A. Chipman, “Mueller matrix imaging polarimeter,” Opt. Eng. 34, 1558–1568 (1995).
    [CrossRef]
  15. C. S. L. Chun, D. L. Fleming, W. A. Harvey, E. J. Torok, F. A. Sadjadi, “Synthetic vision using polarization-sensitive, thermal imaging,” in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE2736, 9–20 (1996).
  16. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  17. R. M. A. Azzam, K. A. Giardina, “Photopolarimeter based on planar grating diffraction,” J. Opt. Soc. Am. A 10, 1190–1196 (1993).
    [CrossRef]
  18. J. R. Maxwell, T. J. Rogne, “Advances in polarized infrared imaging, part 1,” Spectral Reflections, IRIA Newsletter, 97-01 (1997).
  19. W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press, Cambridge, Mass., 1962).
  20. E. Oliva, “Wedged double Wollaston, a device for single shot polarimetric measurements,” Astron. Astrophys. Suppl. Ser. 123, 589–592 (1997).
    [CrossRef]
  21. G. P. Können, Polarized Light in Nature (Cambridge U. Press, Cambridge, England, 1985).
  22. G. U. Spohr, “Messung der Polarisation von Streulicht über Wasserflachen,” Ph.D. dissertation (Universität zu Köln, Köln, Germany, 1978).
  23. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Sec. 10.8.
  24. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).
  25. H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1989).
  26. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990).
  27. A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge U. Press, Cambridge, England, 1989).
    [CrossRef]
  28. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
    [CrossRef] [PubMed]
  29. T. Doumuki, H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686–688 (1997).
    [CrossRef]
  30. J. J. Kuta, H. M. van Driel, D. Landheer, Y. Feng, “Coupled-wave analysis of lamellar metal transmission gratings for the visible and the infrared,” J. Opt. Soc. Am. A 12, 1118–1127 (1995).
    [CrossRef]
  31. H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band,” Opt. Lett. 22, 419–421 (1997).
    [CrossRef] [PubMed]
  32. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 72, 1385–1392 (1982).
    [CrossRef]
  33. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  34. M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), pp. 123–157.
    [CrossRef]
  35. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  36. M. A. Jensen, N. P. Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17, 2191–2198 (2000).
    [CrossRef]
  37. W. A. Pliskin, H. S. Lehman, “Structural evaluation of silicon oxide films,” J. Electrochem. Soc. 112, 1013–1019 (1965).
    [CrossRef]
  38. E. Ritter, “Zur Kenntnis der SiO- und Si2O3- in dünnen Schichten,” Opt. Acta 9, 197–202 (1962).
    [CrossRef]
  39. F. López, E. Bernabéu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films 191, 13–19 (1990).
    [CrossRef]

2000 (1)

1999 (1)

1997 (3)

H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band,” Opt. Lett. 22, 419–421 (1997).
[CrossRef] [PubMed]

E. Oliva, “Wedged double Wollaston, a device for single shot polarimetric measurements,” Astron. Astrophys. Suppl. Ser. 123, 589–592 (1997).
[CrossRef]

T. Doumuki, H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686–688 (1997).
[CrossRef]

1995 (2)

1993 (1)

1992 (1)

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near-infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

1990 (1)

F. López, E. Bernabéu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films 191, 13–19 (1990).
[CrossRef]

1986 (2)

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
[CrossRef]

W. G. Egan, “Proposed design of an imaging spectropolarimeter/photopolarimeter for remote sensing of earth resources,” Opt. Eng. 25, 1155–1159 (1986).
[CrossRef]

1983 (1)

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

1982 (1)

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 72, 1385–1392 (1982).
[CrossRef]

1965 (1)

W. A. Pliskin, H. S. Lehman, “Structural evaluation of silicon oxide films,” J. Electrochem. Soc. 112, 1013–1019 (1965).
[CrossRef]

1962 (1)

E. Ritter, “Zur Kenntnis der SiO- und Si2O3- in dünnen Schichten,” Opt. Acta 9, 197–202 (1962).
[CrossRef]

Azzam, R. M. A.

Bergstrahl, J.

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground-based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–103 (1992).
[CrossRef]

Bernabéu, E.

F. López, E. Bernabéu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films 191, 13–19 (1990).
[CrossRef]

Bishop, K. P.

K. P. Bishop, H. D. McIntire, M. P. Fetrow, L. McMackin, “Multi-spectral polarimeter imaging in the visible to near IR,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 49–57 (1999).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Sec. 10.8.

Cespedes, E. R.

B. H. Miles, E. R. Cespedes, R. A. Goodson, “Polarization-based active/passive scanning system for minefield detection,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 239–252 (1992).
[CrossRef]

Chenault, D. B.

D. B. Chenault, R. A. Chipman, “Infrared spectropolarimetry,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE1166, 254–266 (1989).
[CrossRef]

Chipman, R. A.

J. L. Pezzaniti, R. A. Chipman, “Mueller matrix imaging polarimeter,” Opt. Eng. 34, 1558–1568 (1995).
[CrossRef]

D. B. Chenault, R. A. Chipman, “Infrared spectropolarimetry,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE1166, 254–266 (1989).
[CrossRef]

Chun, C. S. L.

C. S. L. Chun, D. L. Fleming, W. A. Harvey, E. J. Torok, F. A. Sadjadi, “Synthetic vision using polarization-sensitive, thermal imaging,” in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE2736, 9–20 (1996).

Deguzman, P. C.

Deschamps, P. Y.

P. Y. Deschamps, M. Herman, A. Podaire, A. Ratier, “The POLDER Instrument: mission objectives,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 72–91 (1992).
[CrossRef]

Doumuki, T.

T. Doumuki, H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686–688 (1997).
[CrossRef]

H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band,” Opt. Lett. 22, 419–421 (1997).
[CrossRef] [PubMed]

Duggin, M. J.

M. J. Duggin, W. G. Egan, J. Gregory, “Measurements of polarization of targets of differing albedo and shadow depth,” in Targets and Backgrounds: Characterization and Representation V, W.R. Watkins, D. Clement, W.R. Reynolds, eds., Proc. SPIE3699, 27–37 (1999).
[CrossRef]

Egan, W. G.

W. G. Egan, “Proposed design of an imaging spectropolarimeter/photopolarimeter for remote sensing of earth resources,” Opt. Eng. 25, 1155–1159 (1986).
[CrossRef]

W. G. Egan, “Enhancement of optical detectability with polarization,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 38–48 (1999).
[CrossRef]

M. J. Duggin, W. G. Egan, J. Gregory, “Measurements of polarization of targets of differing albedo and shadow depth,” in Targets and Backgrounds: Characterization and Representation V, W.R. Watkins, D. Clement, W.R. Reynolds, eds., Proc. SPIE3699, 27–37 (1999).
[CrossRef]

Feng, Y.

Fetrow, M. P.

K. P. Bishop, H. D. McIntire, M. P. Fetrow, L. McMackin, “Multi-spectral polarimeter imaging in the visible to near IR,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 49–57 (1999).
[CrossRef]

Fleming, D. L.

C. S. L. Chun, D. L. Fleming, W. A. Harvey, E. J. Torok, F. A. Sadjadi, “Synthetic vision using polarization-sensitive, thermal imaging,” in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE2736, 9–20 (1996).

Gaylord, T. K.

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 72, 1385–1392 (1982).
[CrossRef]

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Ghatak, A.

A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge U. Press, Cambridge, England, 1989).
[CrossRef]

Giardina, K. A.

Glenar, D. A.

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground-based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–103 (1992).
[CrossRef]

Goodson, R. A.

B. H. Miles, E. R. Cespedes, R. A. Goodson, “Polarization-based active/passive scanning system for minefield detection,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 239–252 (1992).
[CrossRef]

Gregory, J.

M. J. Duggin, W. G. Egan, J. Gregory, “Measurements of polarization of targets of differing albedo and shadow depth,” in Targets and Backgrounds: Characterization and Representation V, W.R. Watkins, D. Clement, W.R. Reynolds, eds., Proc. SPIE3699, 27–37 (1999).
[CrossRef]

Harvey, W. A.

C. S. L. Chun, D. L. Fleming, W. A. Harvey, E. J. Torok, F. A. Sadjadi, “Synthetic vision using polarization-sensitive, thermal imaging,” in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE2736, 9–20 (1996).

Herman, M.

P. Y. Deschamps, M. Herman, A. Podaire, A. Ratier, “The POLDER Instrument: mission objectives,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 72–91 (1992).
[CrossRef]

Hillman, J. J.

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground-based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–103 (1992).
[CrossRef]

Jensen, M. A.

Jones, M. W.

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Kobayashi, Y.

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near-infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990).

Können, G. P.

G. P. Können, Polarized Light in Nature (Cambridge U. Press, Cambridge, England, 1985).

Kuta, J. J.

Landheer, D.

Legault, R.

T. J. Rogne, R. Maxwell, J. Nicoll, R. Legault, “IR polarization for target cuing,” in Proceedings of IRIS Passive Sensors (ERIM International Inc., Ann Arbor, Mich., 1997), pp. 323–340.

Lehman, H. S.

W. A. Pliskin, H. S. Lehman, “Structural evaluation of silicon oxide films,” J. Electrochem. Soc. 112, 1013–1019 (1965).
[CrossRef]

Loewen, E. G.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

López, F.

F. López, E. Bernabéu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films 191, 13–19 (1990).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1989).

Matsumoto, S.

Maxwell, R.

T. J. Rogne, R. Maxwell, J. Nicoll, R. Legault, “IR polarization for target cuing,” in Proceedings of IRIS Passive Sensors (ERIM International Inc., Ann Arbor, Mich., 1997), pp. 323–340.

McIntire, H. D.

K. P. Bishop, H. D. McIntire, M. P. Fetrow, L. McMackin, “Multi-spectral polarimeter imaging in the visible to near IR,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 49–57 (1999).
[CrossRef]

McMackin, L.

K. P. Bishop, H. D. McIntire, M. P. Fetrow, L. McMackin, “Multi-spectral polarimeter imaging in the visible to near IR,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 49–57 (1999).
[CrossRef]

Meier, J. T.

Miles, B. H.

B. H. Miles, E. R. Cespedes, R. A. Goodson, “Polarization-based active/passive scanning system for minefield detection,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 239–252 (1992).
[CrossRef]

Moharam, M. G.

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 72, 1385–1392 (1982).
[CrossRef]

Nevière, M.

M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), pp. 123–157.
[CrossRef]

Nicoll, J.

T. J. Rogne, R. Maxwell, J. Nicoll, R. Legault, “IR polarization for target cuing,” in Proceedings of IRIS Passive Sensors (ERIM International Inc., Ann Arbor, Mich., 1997), pp. 323–340.

Nordin, G. P.

Nordin, N. P.

Oliva, E.

E. Oliva, “Wedged double Wollaston, a device for single shot polarimetric measurements,” Astron. Astrophys. Suppl. Ser. 123, 589–592 (1997).
[CrossRef]

Pezzaniti, J. L.

J. L. Pezzaniti, R. A. Chipman, “Mueller matrix imaging polarimeter,” Opt. Eng. 34, 1558–1568 (1995).
[CrossRef]

Pliskin, W. A.

W. A. Pliskin, H. S. Lehman, “Structural evaluation of silicon oxide films,” J. Electrochem. Soc. 112, 1013–1019 (1965).
[CrossRef]

Podaire, A.

P. Y. Deschamps, M. Herman, A. Podaire, A. Ratier, “The POLDER Instrument: mission objectives,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 72–91 (1992).
[CrossRef]

Popov, E.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

Ratier, A.

P. Y. Deschamps, M. Herman, A. Podaire, A. Ratier, “The POLDER Instrument: mission objectives,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 72–91 (1992).
[CrossRef]

Rice, J. E.

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signature,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
[CrossRef]

Ritter, E.

E. Ritter, “Zur Kenntnis der SiO- und Si2O3- in dünnen Schichten,” Opt. Acta 9, 197–202 (1962).
[CrossRef]

Rogne, T. J.

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signature,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
[CrossRef]

T. J. Rogne, R. Maxwell, J. Nicoll, R. Legault, “IR polarization for target cuing,” in Proceedings of IRIS Passive Sensors (ERIM International Inc., Ann Arbor, Mich., 1997), pp. 323–340.

Sadjadi, F. A.

C. S. L. Chun, D. L. Fleming, W. A. Harvey, E. J. Torok, F. A. Sadjadi, “Synthetic vision using polarization-sensitive, thermal imaging,” in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE2736, 9–20 (1996).

Saif, B.

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground-based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–103 (1992).
[CrossRef]

Sato, S.

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near-infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Shiba, H.

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near-infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press, Cambridge, Mass., 1962).

Smith, F. G.

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signature,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
[CrossRef]

Spohr, G. U.

G. U. Spohr, “Messung der Polarisation von Streulicht über Wasserflachen,” Ph.D. dissertation (Universität zu Köln, Köln, Germany, 1978).

Takami, H.

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near-infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Tamada, H.

H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band,” Opt. Lett. 22, 419–421 (1997).
[CrossRef] [PubMed]

T. Doumuki, H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686–688 (1997).
[CrossRef]

Thelen, A.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).

Thyagarajan, K.

A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge U. Press, Cambridge, England, 1989).
[CrossRef]

Tooley, R. D.

R. D. Tooley.“Man-made target detection using infrared polarization,” in Polarization Considerations for Optical Systems II, R.A. Chipman, ed., Proc. SPIE1166, 52–58 (1989).
[CrossRef]

Torok, E. J.

C. S. L. Chun, D. L. Fleming, W. A. Harvey, E. J. Torok, F. A. Sadjadi, “Synthetic vision using polarization-sensitive, thermal imaging,” in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE2736, 9–20 (1996).

Travis, L. D.

L. D. Travis, “Remote sensing of aerosols with the Earth Observing Scanning Polarimeter,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 154–164 (1992).
[CrossRef]

van Driel, H. M.

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Sec. 10.8.

Yamaguchi, T.

Yamashita, T.

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near-infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

T. Doumuki, H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686–688 (1997).
[CrossRef]

Astron. Astrophys. Suppl. Ser. (1)

E. Oliva, “Wedged double Wollaston, a device for single shot polarimetric measurements,” Astron. Astrophys. Suppl. Ser. 123, 589–592 (1997).
[CrossRef]

J. Electrochem. Soc. (1)

W. A. Pliskin, H. S. Lehman, “Structural evaluation of silicon oxide films,” J. Electrochem. Soc. 112, 1013–1019 (1965).
[CrossRef]

J. Opt. Soc. Am. A (6)

Opt. Acta (1)

E. Ritter, “Zur Kenntnis der SiO- und Si2O3- in dünnen Schichten,” Opt. Acta 9, 197–202 (1962).
[CrossRef]

Opt. Eng. (2)

W. G. Egan, “Proposed design of an imaging spectropolarimeter/photopolarimeter for remote sensing of earth resources,” Opt. Eng. 25, 1155–1159 (1986).
[CrossRef]

J. L. Pezzaniti, R. A. Chipman, “Mueller matrix imaging polarimeter,” Opt. Eng. 34, 1558–1568 (1995).
[CrossRef]

Opt. Lett. (1)

Publ. Astron. Soc. Pac. (1)

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near-infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Science (1)

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Thin Solid Films (1)

F. López, E. Bernabéu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films 191, 13–19 (1990).
[CrossRef]

Other (23)

P. Y. Deschamps, M. Herman, A. Podaire, A. Ratier, “The POLDER Instrument: mission objectives,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 72–91 (1992).
[CrossRef]

K. P. Bishop, H. D. McIntire, M. P. Fetrow, L. McMackin, “Multi-spectral polarimeter imaging in the visible to near IR,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 49–57 (1999).
[CrossRef]

D. B. Chenault, R. A. Chipman, “Infrared spectropolarimetry,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE1166, 254–266 (1989).
[CrossRef]

C. S. L. Chun, D. L. Fleming, W. A. Harvey, E. J. Torok, F. A. Sadjadi, “Synthetic vision using polarization-sensitive, thermal imaging,” in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE2736, 9–20 (1996).

J. R. Maxwell, T. J. Rogne, “Advances in polarized infrared imaging, part 1,” Spectral Reflections, IRIA Newsletter, 97-01 (1997).

W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press, Cambridge, Mass., 1962).

L. D. Travis, “Remote sensing of aerosols with the Earth Observing Scanning Polarimeter,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 154–164 (1992).
[CrossRef]

B. H. Miles, E. R. Cespedes, R. A. Goodson, “Polarization-based active/passive scanning system for minefield detection,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 239–252 (1992).
[CrossRef]

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground-based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–103 (1992).
[CrossRef]

R. D. Tooley.“Man-made target detection using infrared polarization,” in Polarization Considerations for Optical Systems II, R.A. Chipman, ed., Proc. SPIE1166, 52–58 (1989).
[CrossRef]

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signature,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
[CrossRef]

T. J. Rogne, R. Maxwell, J. Nicoll, R. Legault, “IR polarization for target cuing,” in Proceedings of IRIS Passive Sensors (ERIM International Inc., Ann Arbor, Mich., 1997), pp. 323–340.

M. J. Duggin, W. G. Egan, J. Gregory, “Measurements of polarization of targets of differing albedo and shadow depth,” in Targets and Backgrounds: Characterization and Representation V, W.R. Watkins, D. Clement, W.R. Reynolds, eds., Proc. SPIE3699, 27–37 (1999).
[CrossRef]

W. G. Egan, “Enhancement of optical detectability with polarization,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 38–48 (1999).
[CrossRef]

M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), pp. 123–157.
[CrossRef]

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

G. P. Können, Polarized Light in Nature (Cambridge U. Press, Cambridge, England, 1985).

G. U. Spohr, “Messung der Polarisation von Streulicht über Wasserflachen,” Ph.D. dissertation (Universität zu Köln, Köln, Germany, 1978).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Sec. 10.8.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1989).

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990).

A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge U. Press, Cambridge, England, 1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of two different pixel structures for the spectropolarimetric sensor: (a) triple-decker design, (b) double-decker design.

Fig. 2
Fig. 2

Multispectral-filter design and simulated-transmittance curves for filters on (a) sapphire and (b) GaAs substrates.

Fig. 3
Fig. 3

Simulation results for the transmission of the zeroth-order TM light through a wire-grid polarizer built on a Si substrate as a function of wavelength for four different grating pitches. The input light was a TM wave at normal incidence.

Fig. 4
Fig. 4

Simulation results for higher-order diffraction and reflection for (a) TM and (b) TE polarization components. The simulation assumes Al-Nb-Ti (200 Å, 2500 Å, and 500 Å, respectively) wires with a 2-μm pitch and a 50% duty cycle on a Si substrate. T0, zeroth-order transmission; T1, first-order transmission; T2, second-order transmission; R0, zeroth-order reflection.

Fig. 5
Fig. 5

Simulated (thin solid curves) and measured (thick solid curves) transmittances of the fabricated multispectral filter on a sapphire substrate. Correction was made for large size of FTIR probing beam in the measurement.

Fig. 6
Fig. 6

Optical setup for multispectral-filter imaging characterization. A metal block heated to a temperature T was used as an infrared source. D and F are lens diameter and focal length, respectively.

Fig. 7
Fig. 7

Emission images of a section of the fabricated multispectral filter at various source temperatures.

Fig. 8
Fig. 8

Measured transmittance and simulation results for one of the polarization subfilters with Al-Nb-Ti (200 Å, 2000 Å, 500 Å, respectively) with a 2-μm pitch on a Si substrate after compensating for the ZnSe polarizer that was used to synthesize source polarization

Fig. 9
Fig. 9

Optical setup for polarization-filter imaging characterization. A broadband infrared light source was used. The ZnSe polarizer was rotated to change the infrared-source polarization.

Fig. 10
Fig. 10

Transmission images through the fabricated polarization filter. The angle θ is the orientation angle of the ZnSe polarizer, measured clockwise with respect to the normal to the optical table plane. The orientation of the polarization subfilter is also shown.

Fig. 11
Fig. 11

FTIR measurement results for one spectropolarimetric subfilter with the spectral peak at 4 μm and horizontal polarization. The angle θ is the orientation angle of the ZnSe polarizer, measured clockwise with respect to the normal to the optical table plane. For example, the incident infrared light is vertically polarized when θ = 0°.

Fig. 12
Fig. 12

Transmission images through the composite spectropolarimetric filter (multispectral filter sandwiched against the polarization filter) for four different input polarizations. In a unit pixel, rows correspond to polarization subfilters (measured counterclockwise), and columns represent spectral subfilters. λ1, λ2, and λ3 denote wavebands of 3–4 μm, 3.5–4.5 μm, and 4–5 μm, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I=ax2cos2θ+ay2sin2θ+axay expiΔexp-iαcosθsinθ+axay exp-iΔexpiαcosθsinθ,
I=ax2cos2θ+ay2sin2θ+axay cosΔsin2θ.
S0=ax2+ay2=Iθ=0°+Iθ=90°, S1=ax2-ay2=Iθ=0°-Iθ=90°, S2=2axay cosΔ=Iθ=45°-Iθ=135°.
Iθ=135°=Iθ=0°+Iθ=90°-Iθ=45°.

Metrics