Abstract

The laser-induced incandescence of a particle of unknown size and composition can be detected simultaneously with the light elastically scattered by the particle, providing information on both the size and composition of the particle. The technique relies on vaporization of the particle; detection of the incandescence signal at the time of vaporization allows determination of the boiling point of the particle, which can in turn be related to the composition of the particle. The elastically scattered signal provides information about the size of the particle and confirmation that it was vaporized. The technique is demonstrated by directing particles through a Nd:YAG laser cavity with ∼106 W/cm2 of circulating intensity. Elements such as tungsten, silicon, and graphite, as well as common aerosols such as soot, can be detected and identified.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Fabiny, “Sensing rogue particles with optical scattering,” Opt. Photon. News, January1998, pp. 34–38.
  2. R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the Rayleigh scattering size range,” J. Aerosol Sci. 20, 331–345 (1989).
    [CrossRef]
  3. W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
    [CrossRef]
  4. P. J. McKeown, M. V. Johnston, D. M. Murphy, “On-line single-particle analysis by laser desorption mass spectrometry,” Anal. Chem. 63, 2069–2071 (1991).
    [CrossRef]
  5. J. Gelbwachs, M. Birnbaum, “Fluorescence of atmospheric aerosols and lidar implications,” Appl. Opt. 12, 2443–2447 (1973).
    [CrossRef]
  6. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
    [CrossRef] [PubMed]
  7. S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
    [CrossRef]
  8. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [CrossRef] [PubMed]
  9. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
    [CrossRef]
  10. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  11. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
    [CrossRef]
  12. C. J. Dasch, “Spatially resolved soot-absorption measurements in flames using laser vaporization of particles,” Opt. Lett. 9, 214–215 (1984).
    [CrossRef] [PubMed]
  13. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  14. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
    [CrossRef]
  15. J. R. Fincke, C. L. Jeffery, S. B. Englert, “In-flight measurement of particle size and temperature,” J. Phys. E 21, 367–370 (1998).
    [CrossRef]
  16. E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
    [CrossRef]
  17. T. Joutsenoja, J. Stenberg, R. Hernberg, M. Aho, “Pyrometric measurement of the temperature and size of individual combusting fuel particles,” Appl. Opt. 36, 1525–1535 (1997).
    [CrossRef] [PubMed]
  18. J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity, and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
    [CrossRef]
  19. T. Joutsenoja, R. Hernberg, “Pyrometric sizing of high-temperature particles in flow reactors,” Appl. Opt. 37, 3487–3493 (1998).
    [CrossRef]
  20. P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
    [CrossRef]
  21. A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol. Sci. 30, 71–87 (1999).
    [CrossRef]
  22. R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1991).
    [CrossRef]
  23. R. A. Keller, N. S. Nogar, “Gasdynamic focusing for sample concentration in ultrasensitive analysis,” Appl. Opt. 23, 2146–2151 (1984).
    [CrossRef] [PubMed]
  24. F. A. Williams, “On vaporization of mist by radiation,” Int. J. Heat Mass Transfer 8, 575–587 (1965).
    [CrossRef]
  25. R. L. Armstrong, “Interactions of absorbing aerosols with intense light beams,” J. Appl. Phys. 56, 2142–2153 (1984).
    [CrossRef]
  26. C. A. Sleicher, S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48, 1819–1824 (1956).
    [CrossRef]
  27. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1991).
  28. C. J. Smithells, Metals Reference Handbook, 4th ed. (Butterworths, London, 1967).
  29. Periodic Table of the Elements, produced by Sargent-Welch Scientific Company, Skokie, Ill., 1980.
  30. F. P. Bundy, “Pressure-temperature phase diagram of elemental carbon,” Physica A 156, 169–178 (1989).
    [CrossRef]
  31. R. A. Paquin, “Properties of metals,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. 2, pp. 35–49.
  32. B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
    [CrossRef]
  33. J. F. O’Hanlon, A User’s Guide to Vacuum Technology, 2nd ed. (Wiley, New York, 1989).

1999 (1)

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol. Sci. 30, 71–87 (1999).
[CrossRef]

1998 (5)

1997 (1)

1996 (2)

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

1995 (2)

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

1994 (1)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

1993 (1)

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity, and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

1991 (2)

P. J. McKeown, M. V. Johnston, D. M. Murphy, “On-line single-particle analysis by laser desorption mass spectrometry,” Anal. Chem. 63, 2069–2071 (1991).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1991).
[CrossRef]

1990 (2)

E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
[CrossRef]

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

1989 (2)

R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the Rayleigh scattering size range,” J. Aerosol Sci. 20, 331–345 (1989).
[CrossRef]

F. P. Bundy, “Pressure-temperature phase diagram of elemental carbon,” Physica A 156, 169–178 (1989).
[CrossRef]

1984 (5)

1977 (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

1973 (1)

J. Gelbwachs, M. Birnbaum, “Fluorescence of atmospheric aerosols and lidar implications,” Appl. Opt. 12, 2443–2447 (1973).
[CrossRef]

1965 (1)

F. A. Williams, “On vaporization of mist by radiation,” Int. J. Heat Mass Transfer 8, 575–587 (1965).
[CrossRef]

1956 (1)

C. A. Sleicher, S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48, 1819–1824 (1956).
[CrossRef]

Aho, M.

Armstrong, R. L.

R. L. Armstrong, “Interactions of absorbing aerosols with intense light beams,” J. Appl. Phys. 56, 2142–2153 (1984).
[CrossRef]

Bader, K.

Beretta, F.

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Birnbaum, M.

J. Gelbwachs, M. Birnbaum, “Fluorescence of atmospheric aerosols and lidar implications,” Appl. Opt. 12, 2443–2447 (1973).
[CrossRef]

Bundy, F. P.

F. P. Bundy, “Pressure-temperature phase diagram of elemental carbon,” Physica A 156, 169–178 (1989).
[CrossRef]

Chandler, D. W.

E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
[CrossRef]

Churchill, S. W.

C. A. Sleicher, S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48, 1819–1824 (1956).
[CrossRef]

D’Alessio, A.

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Dasch, C. J.

Dietrich, D. L.

Downey, S. W.

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Emerson, A. B.

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

Englert, S. B.

J. R. Fincke, C. L. Jeffery, S. B. Englert, “In-flight measurement of particle size and temperature,” J. Phys. E 21, 367–370 (1998).
[CrossRef]

Fabiny, L.

L. Fabiny, “Sensing rogue particles with optical scattering,” Opt. Photon. News, January1998, pp. 34–38.

Filippov, A. V.

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol. Sci. 30, 71–87 (1999).
[CrossRef]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Fincke, J. R.

J. R. Fincke, C. L. Jeffery, S. B. Englert, “In-flight measurement of particle size and temperature,” J. Phys. E 21, 367–370 (1998).
[CrossRef]

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity, and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

Gelbwachs, J.

J. Gelbwachs, M. Birnbaum, “Fluorescence of atmospheric aerosols and lidar implications,” Appl. Opt. 12, 2443–2447 (1973).
[CrossRef]

Hernberg, R.

Jeffery, C. L.

J. R. Fincke, C. L. Jeffery, S. B. Englert, “In-flight measurement of particle size and temperature,” J. Phys. E 21, 367–370 (1998).
[CrossRef]

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity, and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

Jensen, K. A.

Johnston, M. V.

P. J. McKeown, M. V. Johnston, D. M. Murphy, “On-line single-particle analysis by laser desorption mass spectrometry,” Anal. Chem. 63, 2069–2071 (1991).
[CrossRef]

Joutsenoja, T.

Keller, R. A.

Knollenberg, R. G.

R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the Rayleigh scattering size range,” J. Aerosol Sci. 20, 331–345 (1989).
[CrossRef]

Leipertz, A.

Mancuso, C. A.

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity, and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

Markus, M. W.

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol. Sci. 30, 71–87 (1999).
[CrossRef]

McKeown, P. J.

P. J. McKeown, M. V. Johnston, D. M. Murphy, “On-line single-particle analysis by laser desorption mass spectrometry,” Anal. Chem. 63, 2069–2071 (1991).
[CrossRef]

Melton, L. A.

Mujsce, A. M.

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

Muller, A. J.

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

Murphy, D. M.

P. J. McKeown, M. V. Johnston, D. M. Murphy, “On-line single-particle analysis by laser desorption mass spectrometry,” Anal. Chem. 63, 2069–2071 (1991).
[CrossRef]

Nogar, N. S.

O’Hanlon, J. F.

J. F. O’Hanlon, A User’s Guide to Vacuum Technology, 2nd ed. (Wiley, New York, 1989).

Paquin, R. A.

R. A. Paquin, “Properties of metals,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. 2, pp. 35–49.

Reents, W. D.

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

Rohlfing, E. A.

E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
[CrossRef]

Roth, P.

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol. Sci. 30, 71–87 (1999).
[CrossRef]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Schraml, S.

Siconolfi, D. J.

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

Sinclair, J. D.

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

Sleicher, C. A.

C. A. Sleicher, S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48, 1819–1824 (1956).
[CrossRef]

Smithells, C. J.

C. J. Smithells, Metals Reference Handbook, 4th ed. (Butterworths, London, 1967).

Stenberg, J.

Swank, W. D.

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity, and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

Swanson, A. G.

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

Ticich, T. M.

Vaglieco, B. M.

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1991).

Vander Wal, R. L.

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

West, J. R.

Will, S.

Williams, F. A.

F. A. Williams, “On vaporization of mist by radiation,” Int. J. Heat Mass Transfer 8, 575–587 (1965).
[CrossRef]

Aerosol Sci. Technol. (1)

W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995).
[CrossRef]

Anal. Chem. (1)

P. J. McKeown, M. V. Johnston, D. M. Murphy, “On-line single-particle analysis by laser desorption mass spectrometry,” Anal. Chem. 63, 2069–2071 (1991).
[CrossRef]

Appl. Opt. (11)

J. Gelbwachs, M. Birnbaum, “Fluorescence of atmospheric aerosols and lidar implications,” Appl. Opt. 12, 2443–2447 (1973).
[CrossRef]

R. A. Keller, N. S. Nogar, “Gasdynamic focusing for sample concentration in ultrasensitive analysis,” Appl. Opt. 23, 2146–2151 (1984).
[CrossRef] [PubMed]

L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
[CrossRef] [PubMed]

C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
[CrossRef] [PubMed]

T. Joutsenoja, J. Stenberg, R. Hernberg, M. Aho, “Pyrometric measurement of the temperature and size of individual combusting fuel particles,” Appl. Opt. 36, 1525–1535 (1997).
[CrossRef] [PubMed]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

T. Joutsenoja, R. Hernberg, “Pyrometric sizing of high-temperature particles in flow reactors,” Appl. Opt. 37, 3487–3493 (1998).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1991).
[CrossRef]

Appl. Phys. B (1)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Chem. Phys. Lett. (1)

E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
[CrossRef]

Combust. Flame (1)

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Ind. Eng. Chem. (1)

C. A. Sleicher, S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48, 1819–1824 (1956).
[CrossRef]

Int. J. Heat Mass Transfer (1)

F. A. Williams, “On vaporization of mist by radiation,” Int. J. Heat Mass Transfer 8, 575–587 (1965).
[CrossRef]

J. Aerosol Sci. (2)

R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the Rayleigh scattering size range,” J. Aerosol Sci. 20, 331–345 (1989).
[CrossRef]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

J. Aerosol. Sci. (1)

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol. Sci. 30, 71–87 (1999).
[CrossRef]

J. Appl. Phys. (2)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

R. L. Armstrong, “Interactions of absorbing aerosols with intense light beams,” J. Appl. Phys. 56, 2142–2153 (1984).
[CrossRef]

J. Phys. E (1)

J. R. Fincke, C. L. Jeffery, S. B. Englert, “In-flight measurement of particle size and temperature,” J. Phys. E 21, 367–370 (1998).
[CrossRef]

Meas. Sci. Technol. (1)

J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity, and temperature,” Meas. Sci. Technol. 4, 559–565 (1993).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

L. Fabiny, “Sensing rogue particles with optical scattering,” Opt. Photon. News, January1998, pp. 34–38.

Physica A (1)

F. P. Bundy, “Pressure-temperature phase diagram of elemental carbon,” Physica A 156, 169–178 (1989).
[CrossRef]

Other (5)

R. A. Paquin, “Properties of metals,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. 2, pp. 35–49.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1991).

C. J. Smithells, Metals Reference Handbook, 4th ed. (Butterworths, London, 1967).

Periodic Table of the Elements, produced by Sargent-Welch Scientific Company, Skokie, Ill., 1980.

J. F. O’Hanlon, A User’s Guide to Vacuum Technology, 2nd ed. (Wiley, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical layout of the instrument. An interaction region is created by the intersection of a gas stream containing airborne particles (shown here with the gas jet perpendicular to the page) and the intracavity light of a high-finesse Nd:YAG laser. The particle is heated to incandescence as it is directed through the 1.064-μm light, and both the elastically scattered light and the incandescent light are imaged by a variety of detectors.

Fig. 2
Fig. 2

Detection and vaporization limits of the system described in Section 3 for a particle with absorption coefficient and emissivity both constant and wavelength equal to 1. The limits are shown for an incandescence-detection channel using KG5 filter glass. The values used in the simplified model were N = 2 × 10-12 A/Hz1/2, f = 1 MHz, dΩ = 0.16, I 0 = 106 W/cm2, k air = 2.6 × 10-4 W cm-1 s-1 K-1, η = 8 W/A, and I N = 10-12 A/Hz1/2 for the silicon APD. The values used for the thermodynamic properties for the time-dependent model were the values for graphite (H v = 7.8 × 105 J/mol, ρ s = 2.62 g/cm3, C s = 0.72 J g-1 K-1, W v = 36 g/mol, and W s = 12 g/mol), with the exception of K abs, ε, and T b . K abs and ε were equal to 1, and T b was varied from 1000 to 5000 K to determine the detection limits.

Fig. 3
Fig. 3

Calculated temperature and radius for a graphite particle with an initial radius of 0.25 μm.

Fig. 4
Fig. 4

Calculated normalized scatter signals from an absorbing particle (graphite) that vaporizes before passing completely through the laser light and a nonabsorbing particle (PSL) of the same initial diameter (0.5 μm). Note the reduced pulse width for the graphite particle, indicating that the particle vaporized before traversing the beam.

Fig. 5
Fig. 5

Calculated ratio of signals from the incandescent-detection channels as a function of boiling point. It is assumed that the emissivity is wavelength independent. Two plots are shown—one shows the ratio of signals from the two visible detection channels (KG5 and KG5*RG715 filter glasses), while the other shows the ratio of the broadband visible channel (KG5 filter glass) to the infrared channel.

Fig. 6
Fig. 6

(a) Pulse-height distributions measured with a multichannel analyzer of 0.304-μm PSL particles. (b) Calculated distribution for particles localized to half the laser beam’s waist size.

Fig. 7
Fig. 7

Normalized signal from the elastically scattered light for graphite at two circulating intensities. Note that the particle vaporizes more quickly at the higher intensity, resulting in reduction in the pulse width of the scattered signal. The signal from the particle vaporized at low circulating intensity shows both the poor signal-to-noise ratio caused by the reduction in circulating intensity and fluctuations in the signal that we attribute to nonspherical particles.

Fig. 8
Fig. 8

Demonstration of the ability of this instrument to distinguish between different metals. The left axis shows the ratios of the maximum values in the two incandescence detectors, and the right axis shows the corresponding temperatures for particles with emissivities of 1 over the detection bandwidth.

Fig. 9
Fig. 9

Results of two-color pyrometry on graphite and comparison with calculated values (shown as open circles).

Fig. 10
Fig. 10

Comparison of model predictions (shown as open circles) to KG5 signal alone for graphite.

Fig. 11
Fig. 11

Detection of soot using the LII method in a solid-state laser cavity. The open circles show the counts taken while sampling room air for 13 min. The closed circles show the counts taken with an oil lamp burning near the intake valve for 13 min.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Kabsπa2I-hNTb-T0πa2=0,
dΩΔησsbTb44πa2ε=N2+IN21/2f,
Δ=ibw Bλdλ0 Bλdλ,
Bλ=2επhc2λ51exphc/λkT-1
Kabsaπa2It-hNT-T0πa2-HvWvdMdt-σsb4πa2T4-T04=43 πa3ρsCsdTdt,
dadt=-dMdt14πρsa2,
Sscatt=ηdΩIt83 πa62πλ4m2-1m2+22,
Sincandt=ε4πat2dΩ 0 Bλ, TtRληλdλ,
τdiff=ρsCsa24κs,
Kabs2π Qabs tan-1aadepth,
hN2Kaira1+dMdt Cair8πakair+dMdt Cair24πakair-1.
dMdt=4πaPpDWv10-6RTln1-Pp-PatmPp+Patm-1,
D=21072kTNAπWv1/2kT106πdair2Patm-1
I=It=PIC10-3πw02expt2t02.

Metrics