Abstract

We demonstrate a simple periodically locked cw cavity ringdown spectroscopy technique that enables a very large number of ringdown events to be rapidly acquired. An external cavity diode laser is locked to a high-finesse cavity, and as many as 16,000 ringdown events per second are obtained by periodically switching off the light entering the high-finesse cavity. Following each ringdown event, the light to the cavity is switched back on and cavity lock is rapidly reacquired. Limited only by our relatively modest digitization rate, we obtained a minimum detectable absorption loss of 4.7 × 10-9 cm-1, but we show that faster digitization could provide a sensitivity of 5.9 × 10-10 cm-1 Hz-1/2.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984).
    [CrossRef]
  2. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ringdown spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
    [CrossRef]
  3. K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1999).
    [CrossRef]
  4. J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, “Novel uses of lasers in atomic spectroscopy,” J. Anal. At. Spectrom. 15, 1161–1189 (2000).
    [CrossRef]
  5. G. Berden, R. Peeters, G. Meijer, “Cavity ringdown spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  6. A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  7. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [CrossRef]
  8. K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ringdown spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
    [CrossRef]
  9. M. Hippler, M. Quack, “CW cavity ringdown infrared absorption spectroscopy in pulsed supersonic jets: nitrous oxide and methane,” Chem. Phys. Lett. 314, 273–281 (1999).
    [CrossRef]
  10. M. Metsala, S. F. Yang, A. Vaittinen, D. Permogorov, L. Halonen, “High-resolution cavity ringdown study of acetylene between 12 260 and 12 380 cm-1,” Chem. Phys. Lett. 346, 373–378 (2001).
    [CrossRef]
  11. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
    [CrossRef]
  12. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
    [CrossRef]
  13. G. Totschnig, D. S. Baer, J. Wang, E. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009–2016 (2000).
    [CrossRef]
  14. M. Murtz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10-μm region,” Appl. Phys. B 68, 243–249 (1999).
    [CrossRef]
  15. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H. W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1865 (1999).
    [CrossRef]
  16. J. Poirson, F. Bretenaker, M. Vallet, A. LeFloch, “Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
    [CrossRef]
  17. Z. Y. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
    [CrossRef]
  18. K. W. An, C. H. Yang, E. E. Dasari, M. S. Feld, “Cavity ringdown technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995).
    [CrossRef]
  19. Y. B. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
    [CrossRef]
  20. Y. B. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
    [CrossRef]
  21. R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  22. R. W. Fox, C. W. Oates, L. W. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, R. D. van Zee, J. P. Looney, eds., Vol. 40 of Experimental Methods in the Physical Sciences (Elsevier Science, New York, 2002).
  23. B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
    [CrossRef]
  24. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
    [CrossRef]
  25. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
    [CrossRef]
  26. C. R. Bucher, K. K. Lehmann, D. F. Plusquellic, G. T. Fraser, “Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy,” Appl. Opt. 39, 3154–3164 (2000).
    [CrossRef]
  27. A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
    [CrossRef]
  28. M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor-lasers for high-resolution spectroscopy,” Opt. Communi. 85, 355–359 (1991).
    [CrossRef]
  29. C. E. Wieman, L. Hollberg, “Using diode-lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  30. G. D. Rovera, G. Santarelli, A. Clairon, “A laser-diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
    [CrossRef]
  31. J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado, Boulder, Colorado, 1997).

2001 (3)

M. Metsala, S. F. Yang, A. Vaittinen, D. Permogorov, L. Halonen, “High-resolution cavity ringdown study of acetylene between 12 260 and 12 380 cm-1,” Chem. Phys. Lett. 346, 373–378 (2001).
[CrossRef]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001).
[CrossRef]

Y. B. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
[CrossRef]

2000 (7)

G. Totschnig, D. S. Baer, J. Wang, E. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009–2016 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, “Novel uses of lasers in atomic spectroscopy,” J. Anal. At. Spectrom. 15, 1161–1189 (2000).
[CrossRef]

G. Berden, R. Peeters, G. Meijer, “Cavity ringdown spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

C. R. Bucher, K. K. Lehmann, D. F. Plusquellic, G. T. Fraser, “Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy,” Appl. Opt. 39, 3154–3164 (2000).
[CrossRef]

Y. B. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

1999 (3)

M. Murtz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10-μm region,” Appl. Phys. B 68, 243–249 (1999).
[CrossRef]

J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H. W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1865 (1999).
[CrossRef]

M. Hippler, M. Quack, “CW cavity ringdown infrared absorption spectroscopy in pulsed supersonic jets: nitrous oxide and methane,” Chem. Phys. Lett. 314, 273–281 (1999).
[CrossRef]

1998 (5)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ringdown spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ringdown spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

1997 (2)

1995 (1)

1994 (1)

G. D. Rovera, G. Santarelli, A. Clairon, “A laser-diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

1991 (3)

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor-lasers for high-resolution spectroscopy,” Opt. Communi. 85, 355–359 (1991).
[CrossRef]

C. E. Wieman, L. Hollberg, “Using diode-lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Z. Y. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1984 (1)

1983 (1)

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

An, K. W.

Anderson, D. Z.

Arnold, A. S.

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Ashfold, M. N. R.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ringdown spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Baer, D. S.

Baillargeon, J. N.

Bennett, R. G. T.

Z. Y. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ringdown spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Berkeland, D.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor-lasers for high-resolution spectroscopy,” Opt. Communi. 85, 355–359 (1991).
[CrossRef]

Boshier, M. G.

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor-lasers for high-resolution spectroscopy,” Opt. Communi. 85, 355–359 (1991).
[CrossRef]

Bretenaker, F.

Bucher, C. R.

Busch, K. W.

K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1999).
[CrossRef]

Busch, M. A.

K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1999).
[CrossRef]

Byer, R. L.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

Capasso, F.

Cho, A. Y.

Clairon, A.

G. D. Rovera, G. Santarelli, A. Clairon, “A laser-diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

Dasari, E. E.

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Drever, R.

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Feld, M. S.

Ford, G. M.

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fox, R. W.

R. W. Fox, C. W. Oates, L. W. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, R. D. van Zee, J. P. Looney, eds., Vol. 40 of Experimental Methods in the Physical Sciences (Elsevier Science, New York, 2002).

Fraser, G. T.

Frech, B.

M. Murtz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10-μm region,” Appl. Phys. B 68, 243–249 (1999).
[CrossRef]

Frisch, J. C.

Gmachl, C.

Gornushkin, I. B.

J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, “Novel uses of lasers in atomic spectroscopy,” J. Anal. At. Spectrom. 15, 1161–1189 (2000).
[CrossRef]

Hahn, J. W.

Hall, J. L.

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Halonen, L.

M. Metsala, S. F. Yang, A. Vaittinen, D. Permogorov, L. Halonen, “High-resolution cavity ringdown study of acetylene between 12 260 and 12 380 cm-1,” Chem. Phys. Lett. 346, 373–378 (2001).
[CrossRef]

Hanson, R. K.

Harb, C. C.

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Harris, J. S.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

He, Y. B.

Y. B. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
[CrossRef]

Y. B. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Hinds, E. A.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor-lasers for high-resolution spectroscopy,” Opt. Communi. 85, 355–359 (1991).
[CrossRef]

Hippler, M.

M. Hippler, M. Quack, “CW cavity ringdown infrared absorption spectroscopy in pulsed supersonic jets: nitrous oxide and methane,” Chem. Phys. Lett. 314, 273–281 (1999).
[CrossRef]

Hofbauer, H.

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode-lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Hollberg, L. W.

R. W. Fox, C. W. Oates, L. W. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, R. D. van Zee, J. P. Looney, eds., Vol. 40 of Experimental Methods in the Physical Sciences (Elsevier Science, New York, 2002).

Hough, J.

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hutchinson, A. L.

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Kim, J. W.

Kosterev, A. A.

Kowalski, F. V.

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Lee, H. W.

Lee, J. Y.

LeFloch, A.

Lehmann, K. K.

Levenson, M. D.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Li, Z. Y.

Z. Y. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Malinovsky, A. L.

Masser, C. S.

Matveev, O. I.

J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, “Novel uses of lasers in atomic spectroscopy,” J. Anal. At. Spectrom. 15, 1161–1189 (2000).
[CrossRef]

Meijer, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ringdown spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Metsala, M.

M. Metsala, S. F. Yang, A. Vaittinen, D. Permogorov, L. Halonen, “High-resolution cavity ringdown study of acetylene between 12 260 and 12 380 cm-1,” Chem. Phys. Lett. 346, 373–378 (2001).
[CrossRef]

Munley, A. J.

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Murtz, M.

M. Murtz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10-μm region,” Appl. Phys. B 68, 243–249 (1999).
[CrossRef]

Newman, S. M.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ringdown spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Oates, C. W.

R. W. Fox, C. W. Oates, L. W. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, R. D. van Zee, J. P. Looney, eds., Vol. 40 of Experimental Methods in the Physical Sciences (Elsevier Science, New York, 2002).

Orr, B. J.

Y. B. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
[CrossRef]

Y. B. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Orr-Ewing, A. J.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ringdown spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Paldus, B. A.

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Pappas, D.

J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, “Novel uses of lasers in atomic spectroscopy,” J. Anal. At. Spectrom. 15, 1161–1189 (2000).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, G. Meijer, “Cavity ringdown spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Permogorov, D.

M. Metsala, S. F. Yang, A. Vaittinen, D. Permogorov, L. Halonen, “High-resolution cavity ringdown study of acetylene between 12 260 and 12 380 cm-1,” Chem. Phys. Lett. 346, 373–378 (2001).
[CrossRef]

Plusquellic, D. F.

Poirson, J.

Quack, M.

M. Hippler, M. Quack, “CW cavity ringdown infrared absorption spectroscopy in pulsed supersonic jets: nitrous oxide and methane,” Chem. Phys. Lett. 314, 273–281 (1999).
[CrossRef]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Rovera, G. D.

G. D. Rovera, G. Santarelli, A. Clairon, “A laser-diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Sandoghdar, V.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor-lasers for high-resolution spectroscopy,” Opt. Communi. 85, 355–359 (1991).
[CrossRef]

Santarelli, G.

G. D. Rovera, G. Santarelli, A. Clairon, “A laser-diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

Schulz, K. J.

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ringdown spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Simpson, W. R.

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ringdown spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Sivco, D. L.

Smith, B. W.

J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, “Novel uses of lasers in atomic spectroscopy,” J. Anal. At. Spectrom. 15, 1161–1189 (2000).
[CrossRef]

Spence, T. G.

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Stedman, G. E.

Z. Y. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Tittel, F. K.

Totschnig, G.

Urban, W.

M. Murtz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10-μm region,” Appl. Phys. B 68, 243–249 (1999).
[CrossRef]

Vaittinen, A.

M. Metsala, S. F. Yang, A. Vaittinen, D. Permogorov, L. Halonen, “High-resolution cavity ringdown study of acetylene between 12 260 and 12 380 cm-1,” Chem. Phys. Lett. 346, 373–378 (2001).
[CrossRef]

Vallet, M.

Wang, J.

Ward, H.

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Wheeler, M. D.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ringdown spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode-lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Wilkie, B.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

Willke, B.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Wilson, J. S.

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Winefordner, J. D.

J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, “Novel uses of lasers in atomic spectroscopy,” J. Anal. At. Spectrom. 15, 1161–1189 (2000).
[CrossRef]

Winter, E.

Xie, J.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Yang, C. H.

Yang, S. F.

M. Metsala, S. F. Yang, A. Vaittinen, D. Permogorov, L. Halonen, “High-resolution cavity ringdown study of acetylene between 12 260 and 12 380 cm-1,” Chem. Phys. Lett. 346, 373–378 (2001).
[CrossRef]

Ye, J.

J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado, Boulder, Colorado, 1997).

Yoo, Y. S.

Zare, R. N.

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (2)

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

M. Murtz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10-μm region,” Appl. Phys. B 68, 243–249 (1999).
[CrossRef]

Chem. Phys. Lett. (7)

Y. B. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Y. B. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ringdown spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

M. Hippler, M. Quack, “CW cavity ringdown infrared absorption spectroscopy in pulsed supersonic jets: nitrous oxide and methane,” Chem. Phys. Lett. 314, 273–281 (1999).
[CrossRef]

M. Metsala, S. F. Yang, A. Vaittinen, D. Permogorov, L. Halonen, “High-resolution cavity ringdown study of acetylene between 12 260 and 12 380 cm-1,” Chem. Phys. Lett. 346, 373–378 (2001).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, G. Meijer, “Cavity ringdown spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Anal. At. Spectrom. (1)

J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, “Novel uses of lasers in atomic spectroscopy,” J. Anal. At. Spectrom. 15, 1161–1189 (2000).
[CrossRef]

J. Appl. Phys. (1)

B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ringdown spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Z. Y. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Opt. Communi. (1)

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor-lasers for high-resolution spectroscopy,” Opt. Communi. 85, 355–359 (1991).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (5)

A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

C. E. Wieman, L. Hollberg, “Using diode-lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

G. D. Rovera, G. Santarelli, A. Clairon, “A laser-diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[CrossRef]

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Other (3)

R. W. Fox, C. W. Oates, L. W. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, R. D. van Zee, J. P. Looney, eds., Vol. 40 of Experimental Methods in the Physical Sciences (Elsevier Science, New York, 2002).

J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado, Boulder, Colorado, 1997).

K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for periodically locked cw CRDS. ECDL, external-cavity diode laser; OI, optical isolators; AOM, acousto-optic-modulator; EOM, electro-optic-modulator; PBS, polarizing beam splitter; PD1, photodiode for PDH locking; PD2, photodiode for ringdown cavity transmission; DBM, double-balanced mixer.

Fig. 2
Fig. 2

Typical empty-cavity ringdown, consisting of 256 individual ringdown events averaged within the oscilloscope, a curve fit to exponential decay, and the residual from the fit. The data and the fit are indistinguishable on this scale

Fig. 3
Fig. 3

Calculated PDH error signal showing the tight central locking region when the laser is on resonance with the ringdown cavity (zero detuning) and the broad locking capture range (out to ±15 MHz).

Fig. 4
Fig. 4

(a) Ringdown cavity transmission obtained from PD2 with the laser locked (0–100 μs), followed by a ringdown event (100–200 μs) and the laser reacquiring cavity lock (shortly after 200 μs). (b) The output of the high-speed integrator (providing feedback to the ECDL injection current) decays toward zero volts after the light is switched off, and lock is rapidly reacquired after the light is switched on.

Fig. 5
Fig. 5

Transmission of the ringdown cavity showing successive ringdown events produced with the periodic cavity lock operating at a repetition rate of 16 kHz.

Fig. 6
Fig. 6

Distribution of ringdown times of 13,000 individual ring-down events recorded over a 2-h period.

Fig. 7
Fig. 7

Periodically locked cw cavity ringdown measurement of the R(4) line of the ν 1 + 3ν 3 overtone band of acetylene with the residual from the fit to a Voigt profile. The reduced χ2 for the fit is 0.73.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α=1c1τ1-1τ0,
MDAL=1c1τ0-1τ0-Δτ.

Metrics