Abstract

A method is presented for in-flight validation of space-based polarization measurements based on approximation of the direction of polarization of scattered sunlight by the Rayleigh single-scattering value. This approximation is verified by simulations of radiative transfer calculations for various atmospheric conditions. The simulations show locations along an orbit where the scattering geometries are such that the intensities of the parallel and orthogonal polarization components of the light are equal, regardless of the observed atmosphere and surface. The method can be applied to any space-based instrument that measures the polarization of reflected solar light. We successfully applied the method to validate the Global Ozone Monitoring Experiment (GOME) polarization measurements. The error in the GOME’s three broadband polarization measurements appears to be ∼1%.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
    [CrossRef]
  2. M. I. Mischenko, L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
    [CrossRef]
  3. M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997).
    [CrossRef]
  4. D. Stam, J. F. de Haan, J. W. Hovenier, P. Stammes, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
    [CrossRef]
  5. J. Chowdhary, B. Cairns, M. Mischenko, L. Travis, “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter,” Geophys. Res. Lett. 28, 243–246 (2001).
    [CrossRef]
  6. O. Hasekamp, J. Landgraf, “Tropospheric ozone information from satellite based polarization measurements,” J. Geophys. Res. 107, 10.1029/2001JD001346 (2002).
  7. European Space Agency, GOME Users Manual (European Space Agency, Munich, 1995), document SP-1182.
  8. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  9. K. L. Coulson, Polarisation and Intensity of Light in the Atmosphere (Deepak, Hampton, Va., 1988).
  10. I. Aben, F. Helderman, D. M. Stam, P. Stammes, “Spectral fine-structure in the polarization skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
    [CrossRef]
  11. N. A. J. Schutgens, P. Stammes, “Parametrisation of Earth’s polarization spectrum in the ultraviolet,” J. Quant. Spectros. Radiat. Transfer 75, 239–255 (2002).
    [CrossRef]
  12. J. F. de Haan, P. B. Bosma, J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).
  13. P. Stammes, “The seventh point polarisation algorithm,” Internal Rep. (Royal Netherlands Meteorological Institute, De Bilt, The Netherlands, 1994).
  14. I. Aben, M. R. Dobber, D. M. Stam, P. Stammes, “Error analysis of polarisation measurements by GOME,” in GOME Geophysical Validation Campaign (European Space Agency, Munich, 1996), document WPP-108, pp. 51–59.
  15. D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” Rep. RP-1139 (NASA Langley Research Center, Hampton, Va., 1985).
  16. A. Deepak, H. E. Gerber, eds., Report of the Experts Meeting on Aerosols and their Climatic Effects (World Meteorological Organization, Geneva, 1983), document WCP-55.
  17. Deutsches Zentrum für Luft- und Raumfahrt, “GOME level 0 1 algorithms description,” Rev. 4A, Rep. ER-TN-DLR-GO-0022 (Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany, 1996).
  18. Deutsches Zentrum für Luft- und Raumfahrt, “GOME Data Processor update report for GDP 0-to-1 version 2.0 and GDP 1-to-2 version 2.7,” Rev. 1A, Rep. ER-TN-DLR-GO-0043 (Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany, 1999).
  19. C. P. Tanzi, I. Aben, S. Slijkhuis, E. Hegels, “Influence of GOME in-flight degradation on Earth radiance measurements,” in Atmospheric Measurements from Space (European Space Agency, 1999), document WPP-161, Vol. 2, pp. 681–685.
  20. D. Loyola, Deutsches Zentrum für Luft- und Raumfahrt e. V., Oberpfaffenhofen, Germany (personal communication, 2001).
  21. N. A. J. Schutgens, P. Stammes, “Improving the polarisation correction algorithm of GOME (Global Ozone Monitoring Experiment,” in Polarization, Measurement, Analysis and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 411–422 (1999).
    [CrossRef]
  22. H. Akima, “A new method of interpolation and smooth curve fitting based on local procedures,” J. Assoc. Comput. Mach. 17, 589–602 (1970).
    [CrossRef]

2002 (2)

O. Hasekamp, J. Landgraf, “Tropospheric ozone information from satellite based polarization measurements,” J. Geophys. Res. 107, 10.1029/2001JD001346 (2002).

N. A. J. Schutgens, P. Stammes, “Parametrisation of Earth’s polarization spectrum in the ultraviolet,” J. Quant. Spectros. Radiat. Transfer 75, 239–255 (2002).
[CrossRef]

2001 (1)

J. Chowdhary, B. Cairns, M. Mischenko, L. Travis, “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter,” Geophys. Res. Lett. 28, 243–246 (2001).
[CrossRef]

1999 (3)

D. Stam, J. F. de Haan, J. W. Hovenier, P. Stammes, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[CrossRef]

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

I. Aben, F. Helderman, D. M. Stam, P. Stammes, “Spectral fine-structure in the polarization skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[CrossRef]

1997 (2)

M. I. Mischenko, L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
[CrossRef]

M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997).
[CrossRef]

1987 (1)

J. F. de Haan, P. B. Bosma, J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

1974 (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

1970 (1)

H. Akima, “A new method of interpolation and smooth curve fitting based on local procedures,” J. Assoc. Comput. Mach. 17, 589–602 (1970).
[CrossRef]

Aben, I.

I. Aben, F. Helderman, D. M. Stam, P. Stammes, “Spectral fine-structure in the polarization skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[CrossRef]

C. P. Tanzi, I. Aben, S. Slijkhuis, E. Hegels, “Influence of GOME in-flight degradation on Earth radiance measurements,” in Atmospheric Measurements from Space (European Space Agency, 1999), document WPP-161, Vol. 2, pp. 681–685.

I. Aben, M. R. Dobber, D. M. Stam, P. Stammes, “Error analysis of polarisation measurements by GOME,” in GOME Geophysical Validation Campaign (European Space Agency, Munich, 1996), document WPP-108, pp. 51–59.

Akima, H.

H. Akima, “A new method of interpolation and smooth curve fitting based on local procedures,” J. Assoc. Comput. Mach. 17, 589–602 (1970).
[CrossRef]

Bosma, P. B.

J. F. de Haan, P. B. Bosma, J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

Bowker, D. E.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” Rep. RP-1139 (NASA Langley Research Center, Hampton, Va., 1985).

Bramstedt, K.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

Bréon, F. M.

M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997).
[CrossRef]

Buchwitz, M.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

Burrows, J. P.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

Cairns, B.

J. Chowdhary, B. Cairns, M. Mischenko, L. Travis, “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter,” Geophys. Res. Lett. 28, 243–246 (2001).
[CrossRef]

Chowdhary, J.

J. Chowdhary, B. Cairns, M. Mischenko, L. Travis, “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter,” Geophys. Res. Lett. 28, 243–246 (2001).
[CrossRef]

Coulson, K. L.

K. L. Coulson, Polarisation and Intensity of Light in the Atmosphere (Deepak, Hampton, Va., 1988).

Davis, R. E.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” Rep. RP-1139 (NASA Langley Research Center, Hampton, Va., 1985).

de Beek, R.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

de Haan, J. F.

D. Stam, J. F. de Haan, J. W. Hovenier, P. Stammes, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[CrossRef]

J. F. de Haan, P. B. Bosma, J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

Deuzé, J. L.

M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997).
[CrossRef]

Devaux, C.

M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997).
[CrossRef]

Dobber, M. R.

I. Aben, M. R. Dobber, D. M. Stam, P. Stammes, “Error analysis of polarisation measurements by GOME,” in GOME Geophysical Validation Campaign (European Space Agency, Munich, 1996), document WPP-108, pp. 51–59.

Eichmann, K.-U.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

Goloub, P.

M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997).
[CrossRef]

Hansen, J. E.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Hasekamp, O.

O. Hasekamp, J. Landgraf, “Tropospheric ozone information from satellite based polarization measurements,” J. Geophys. Res. 107, 10.1029/2001JD001346 (2002).

Hegels, E.

C. P. Tanzi, I. Aben, S. Slijkhuis, E. Hegels, “Influence of GOME in-flight degradation on Earth radiance measurements,” in Atmospheric Measurements from Space (European Space Agency, 1999), document WPP-161, Vol. 2, pp. 681–685.

Helderman, F.

I. Aben, F. Helderman, D. M. Stam, P. Stammes, “Spectral fine-structure in the polarization skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[CrossRef]

Herman, M.

M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997).
[CrossRef]

Hoogen, R.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

Hovenier, J. W.

D. Stam, J. F. de Haan, J. W. Hovenier, P. Stammes, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[CrossRef]

J. F. de Haan, P. B. Bosma, J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

Jones, W. T.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” Rep. RP-1139 (NASA Langley Research Center, Hampton, Va., 1985).

Ladstätter-Weissenmayer, A.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

Landgraf, J.

O. Hasekamp, J. Landgraf, “Tropospheric ozone information from satellite based polarization measurements,” J. Geophys. Res. 107, 10.1029/2001JD001346 (2002).

Loyola, D.

D. Loyola, Deutsches Zentrum für Luft- und Raumfahrt e. V., Oberpfaffenhofen, Germany (personal communication, 2001).

Mischenko, M.

J. Chowdhary, B. Cairns, M. Mischenko, L. Travis, “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter,” Geophys. Res. Lett. 28, 243–246 (2001).
[CrossRef]

Mischenko, M. I.

M. I. Mischenko, L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
[CrossRef]

Myrick, D. L.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” Rep. RP-1139 (NASA Langley Research Center, Hampton, Va., 1985).

Richter, A.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

Rozanov, V.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

Schutgens, N. A. J.

N. A. J. Schutgens, P. Stammes, “Parametrisation of Earth’s polarization spectrum in the ultraviolet,” J. Quant. Spectros. Radiat. Transfer 75, 239–255 (2002).
[CrossRef]

N. A. J. Schutgens, P. Stammes, “Improving the polarisation correction algorithm of GOME (Global Ozone Monitoring Experiment,” in Polarization, Measurement, Analysis and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 411–422 (1999).
[CrossRef]

Slijkhuis, S.

C. P. Tanzi, I. Aben, S. Slijkhuis, E. Hegels, “Influence of GOME in-flight degradation on Earth radiance measurements,” in Atmospheric Measurements from Space (European Space Agency, 1999), document WPP-161, Vol. 2, pp. 681–685.

Stacy, K.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” Rep. RP-1139 (NASA Langley Research Center, Hampton, Va., 1985).

Stam, D.

D. Stam, J. F. de Haan, J. W. Hovenier, P. Stammes, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[CrossRef]

Stam, D. M.

I. Aben, F. Helderman, D. M. Stam, P. Stammes, “Spectral fine-structure in the polarization skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[CrossRef]

I. Aben, M. R. Dobber, D. M. Stam, P. Stammes, “Error analysis of polarisation measurements by GOME,” in GOME Geophysical Validation Campaign (European Space Agency, Munich, 1996), document WPP-108, pp. 51–59.

Stammes, P.

N. A. J. Schutgens, P. Stammes, “Parametrisation of Earth’s polarization spectrum in the ultraviolet,” J. Quant. Spectros. Radiat. Transfer 75, 239–255 (2002).
[CrossRef]

I. Aben, F. Helderman, D. M. Stam, P. Stammes, “Spectral fine-structure in the polarization skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[CrossRef]

D. Stam, J. F. de Haan, J. W. Hovenier, P. Stammes, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[CrossRef]

N. A. J. Schutgens, P. Stammes, “Improving the polarisation correction algorithm of GOME (Global Ozone Monitoring Experiment,” in Polarization, Measurement, Analysis and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 411–422 (1999).
[CrossRef]

P. Stammes, “The seventh point polarisation algorithm,” Internal Rep. (Royal Netherlands Meteorological Institute, De Bilt, The Netherlands, 1994).

I. Aben, M. R. Dobber, D. M. Stam, P. Stammes, “Error analysis of polarisation measurements by GOME,” in GOME Geophysical Validation Campaign (European Space Agency, Munich, 1996), document WPP-108, pp. 51–59.

Tanré, D.

M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997).
[CrossRef]

Tanzi, C. P.

C. P. Tanzi, I. Aben, S. Slijkhuis, E. Hegels, “Influence of GOME in-flight degradation on Earth radiance measurements,” in Atmospheric Measurements from Space (European Space Agency, 1999), document WPP-161, Vol. 2, pp. 681–685.

Travis, L.

J. Chowdhary, B. Cairns, M. Mischenko, L. Travis, “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter,” Geophys. Res. Lett. 28, 243–246 (2001).
[CrossRef]

Travis, L. D.

M. I. Mischenko, L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
[CrossRef]

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Weber, M.

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

Astron. Astrophys. (1)

J. F. de Haan, P. B. Bosma, J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

Geophys. Res. Lett. (2)

J. Chowdhary, B. Cairns, M. Mischenko, L. Travis, “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter,” Geophys. Res. Lett. 28, 243–246 (2001).
[CrossRef]

I. Aben, F. Helderman, D. M. Stam, P. Stammes, “Spectral fine-structure in the polarization skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[CrossRef]

J. Assoc. Comput. Mach. (1)

H. Akima, “A new method of interpolation and smooth curve fitting based on local procedures,” J. Assoc. Comput. Mach. 17, 589–602 (1970).
[CrossRef]

J. Atmos. Sci. (1)

J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
[CrossRef]

J. Geophys. Res. (4)

M. I. Mischenko, L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
[CrossRef]

M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997).
[CrossRef]

D. Stam, J. F. de Haan, J. W. Hovenier, P. Stammes, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[CrossRef]

O. Hasekamp, J. Landgraf, “Tropospheric ozone information from satellite based polarization measurements,” J. Geophys. Res. 107, 10.1029/2001JD001346 (2002).

J. Quant. Spectros. Radiat. Transfer (1)

N. A. J. Schutgens, P. Stammes, “Parametrisation of Earth’s polarization spectrum in the ultraviolet,” J. Quant. Spectros. Radiat. Transfer 75, 239–255 (2002).
[CrossRef]

Space Sci. Rev. (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other (11)

K. L. Coulson, Polarisation and Intensity of Light in the Atmosphere (Deepak, Hampton, Va., 1988).

European Space Agency, GOME Users Manual (European Space Agency, Munich, 1995), document SP-1182.

P. Stammes, “The seventh point polarisation algorithm,” Internal Rep. (Royal Netherlands Meteorological Institute, De Bilt, The Netherlands, 1994).

I. Aben, M. R. Dobber, D. M. Stam, P. Stammes, “Error analysis of polarisation measurements by GOME,” in GOME Geophysical Validation Campaign (European Space Agency, Munich, 1996), document WPP-108, pp. 51–59.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” Rep. RP-1139 (NASA Langley Research Center, Hampton, Va., 1985).

A. Deepak, H. E. Gerber, eds., Report of the Experts Meeting on Aerosols and their Climatic Effects (World Meteorological Organization, Geneva, 1983), document WCP-55.

Deutsches Zentrum für Luft- und Raumfahrt, “GOME level 0 1 algorithms description,” Rev. 4A, Rep. ER-TN-DLR-GO-0022 (Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany, 1996).

Deutsches Zentrum für Luft- und Raumfahrt, “GOME Data Processor update report for GDP 0-to-1 version 2.0 and GDP 1-to-2 version 2.7,” Rev. 1A, Rep. ER-TN-DLR-GO-0043 (Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany, 1999).

C. P. Tanzi, I. Aben, S. Slijkhuis, E. Hegels, “Influence of GOME in-flight degradation on Earth radiance measurements,” in Atmospheric Measurements from Space (European Space Agency, 1999), document WPP-161, Vol. 2, pp. 681–685.

D. Loyola, Deutsches Zentrum für Luft- und Raumfahrt e. V., Oberpfaffenhofen, Germany (personal communication, 2001).

N. A. J. Schutgens, P. Stammes, “Improving the polarisation correction algorithm of GOME (Global Ozone Monitoring Experiment,” in Polarization, Measurement, Analysis and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 411–422 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Ratio (η) of GOME instrument sensitivity for the two orthogonal polarization components as a function of wavelength and per channel for Nadir observations.7 For a polarization-insensitive instrument, η = 1.

Fig. 2
Fig. 2

(a) Degree of polarization P as a function of wavelength for the GOME spectral range for a number of representative geometries along a typical validation phase GOME orbit. These calculations were performed with a doubling adding radiative transfer code12 for an atmosphere with 300 Dobson units of ozone, continental aerosol (optical thickness 0.1 at 550 nm), and an isotropically reflecting vegetation surface. (b) Cos[2χ(λ)] corresponding to the geometries in (a). (c) Fractional polarization p corresponding to the geometries in (a). (d) Reflectivities corresponding to geometries in (a). Reflectivity is defined as I/(μ0 F sun), where μ0 = cos θ0 and πF sun is the extraterrestrial solar irradiance perpendicular to the beam.

Fig. 3
Fig. 3

GOME scan geometry illustrating the East, Nadir, and West pixels. During the GOME validation phase (July 1995–11 March 1996), only the last quarter of each observation was downlinked (see Appendix A); those quarters are shown here shaded.

Fig. 4
Fig. 4

|cos 2χ - cos 2χs.s.| as a function of the single-scattering degree of polarization at the PMD effective wavelengths for the 108 radiative transfer calculations discussed in the text. The three plots show the results for the individual PMDs for East, Nadir, and West observations.

Fig. 5
Fig. 5

(a) Same as in Fig. 2(a), except for a few special geometries for which cos[2χ(λ)] is not constant across the GOME wavelength range. These special geometries always correspond to a low degree of polarization as in (b). (b) Cos[2χ(λ)] corresponding to geometries in (a). (c) Fractional polarization p corresponding to geometries in (a). (d) Reflectivities corresponding to geometries in (a).

Fig. 6
Fig. 6

Typical behavior of (a) cos(2χs.s.) and (b) p s.s. along a GOME orbit (in the GOME validation phase) for the three ground pixel types (East, dashed curves; Nadir, solid curves; West, dotted curves). For each ground pixel type, cos(2χs.s.) = zero at two different locations along the orbit. These locations depend on the illumination and viewing geometry and therefore vary throughout the year.

Fig. 7
Fig. 7

Measured fractional polarization for East observations for (a) PMD1, (b) PMD2, and (c) PMD3 with time (July 1995–11 March 1996) for the special locations [method 1, cos(2χs.s.) = 0 ± 0.01] for which p = 0.5. The average (p av) of the data of each day is shown, including a representative value for the daily standard deviation (σ), shown as an error bar. Given the range of cos(2χs.s.) (=0 ± 0.01) we obtained on average ∼45 observations per day per pixel type for each PMD in this analysis. The means (dashed curves) and the standard deviations (solid curves) of the daily averages over the entire period are shown as well.

Fig. 8
Fig. 8

Geometry of scattering by an atmospheric volume element. The volume element is located in the origin.

Tables (4)

Tables Icon

Table 1 GOME Scattering Geometries Used for the Radiative Transfer Calculationsa

Tables Icon

Table 2 GOME Polarization Measurement Errors (pav - 0.5) and the Corresponding σ Values from the Daily Averages (July 1995–11 March 1996) as Shown in Fig. 7a

Tables Icon

Table 3 Spectral Range and Spectral Resolution of the GOME Main Spectrometer

Tables Icon

Table 4 Spectral Ranges and Effective Wavelengths of the PMDs

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I=I0°+I90°,
Q=I0°-I90°,
U=I45°-I135°,
P=Q2+U21/2/I
tan 2χ=U/Q.
p=1/21-Q/I,
p=1/21-P cos 2χ,
SPMD1+2pC=i pξiSip1-ηi+ηi.
ci=1+ηipi1-ηi+ηi,
cos Θ=cos θ cos θi+sin θ sin θi cosφ-φ0, 0Θπ.
sinπ/2+χsin θi=sinφ-φisin Θ.
cos χ=sin θi sinφ-φisin Θ.
t=tan χ=cos θ sin θi cosφ-φi-cos θi sin θsin θi sinφ-φi=ND,
QI=P cos 2χ=P D2-N2D2+N2=P 1-t21+t2,
UI=P sin 2χ=P 2DND2+N2=P 2t1+t2.

Metrics