Abstract

A mobile lidar (light detection and ranging) system for environmental monitoring is described. The optical and electronic systems are housed in a truck with a retractable rooftop transmission and receiving mirror, connected to a 40-cm-diameter vertically looking telescope. Two injection-seeded Nd:YAG lasers are employed in connection with an optical parametric oscillator-optical parametric amplification transmitter, allowing deep-UV to mid-IR wavelengths to be generated. Fast switching that employs piezoelectric drivers allows multiwavelength differential absorption lidar for simultaneous measurements of several spectrally overlapping atmospheric species. The system can also be used in an imaging multispectral laser-induced fluorescence mode on solid targets. Advanced LabVIEW computer control and multivariate data processing render the system versatile for a multitude of measuring tasks. We illustrate the monitoring of industrial atmospheric mercury and hydrocarbon emissions, volcanic sulfur dioxide plume mapping, fluorescence lidar probing of seawater, and multispectral fluorescence imaging of the facades of a historical monument.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).
  2. S. Svanberg, “Differential absorption lidar (DIAL),” in Air Monitoring by Spectroscopic Techniques, M. Sigrist, ed. (Wiley, New York, 1994).
  3. R. A. Robinson, P. T. Woods, M. J. T. Milton, “DIAL measurements for air pollution and fugative-loss monitoring,” in Air Pollution and Visibility Measurements, Proc. SPIE2506, 140–149 (1995).
    [CrossRef]
  4. L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998).
    [CrossRef]
  5. F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne laser-induced oceanic chlorophyll fluorescence: solar-induced quenching corrections by use of concurrent downwelling irradiance measurements,” Appl. Opt. 87, 3222–3226 (1998).
    [CrossRef]
  6. L. Fiorani, R. Barbini, F. Colao, R. Fantoni, R. Palucci, “Comparison between satellite and laser remote sensing of the Southern Ocean,” J. Comput. Technol. 7, 110–120 (2002).
  7. S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. T58, 79–85 (1995).
    [CrossRef]
  8. V. Raimondi, G. Cecchi, L. Pantani, R. Chiari, “Fluorescence lidar monitoring of historical buildings,” Appl. Opt. 37, 1089–1098 (1998).
    [CrossRef]
  9. P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
    [CrossRef]
  10. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Mobile lidar system for environmental probing,” Appl. Opt. 20, 4181–4185 (1981).
    [CrossRef] [PubMed]
  11. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
    [CrossRef] [PubMed]
  12. P. Weibring, J. N. Smith, H. Edner, S. Svanberg, “Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instrum., submitted for publication.
  13. F. Mellegård, “Development and construction of an automatic calibration unit for a differential absorption lidar system,” diploma paper, Lund Reports on Atomic Physics, LRAP 264 (Lund Institute of Technology, Lund, Sweden, 2000).
  14. H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
    [CrossRef] [PubMed]
  15. I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).
  16. S. A. Hsu, E. A. Meindl, G. B. Gilhousen, “Determining the power-law wind-profile exponent under near-stability conditions at sea,” Appl. Metrol. 33, 757–765 (1994).
    [CrossRef]
  17. P. Weibring, M. Andersson, H. Edner, S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383–388 (1998).
    [CrossRef]
  18. P. Weibring, Ch. Abrahamsson, M. Sjöholm, J. N. Smith, H. Edner, S. Svanberg are preparing a manuscript titled “Multicomponent chemical analysis of gas mixtures using a continuously-tuneable lidar system.
  19. K. V. Mardia, J. K. Kent, Multivariate Analysis (Academic, London, 1979).
  20. K. Esbensen, Multivariate Analysis, 5th ed. (CAMO, Oslo, 2001).
  21. A. S. Bangalore, R. A. Schaffer, G. W. Small, M. A. Arnold, “Genetic algorithm-based method for selecting wavelength and model size for use with partial least-squares regression: application to near-infrared spectroscopy,” Anal. Chem. 68, 4200–4212 (1996).
    [CrossRef] [PubMed]
  22. T. Lindström, U. Holst, P. Weibring, H. Edner, “Analysis of lidar measurements using nonparametric kernel regression methods,” Appl. Phys. B 74, 155–165 (2002).
    [CrossRef]
  23. H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, 921–930 (1989).
    [CrossRef] [PubMed]
  24. H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
    [CrossRef]
  25. I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).
  26. P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
    [CrossRef]
  27. D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).
  28. P. Weibring, “Environmental monitoring by multi-spectral lidar techniques,” Ph. D. dissertation, Lund Reports on Atomic Physics, LRAP-284 (Lund Institute of Technology, Lund, Sweden, 2002).

2002 (3)

L. Fiorani, R. Barbini, F. Colao, R. Fantoni, R. Palucci, “Comparison between satellite and laser remote sensing of the Southern Ocean,” J. Comput. Technol. 7, 110–120 (2002).

T. Lindström, U. Holst, P. Weibring, H. Edner, “Analysis of lidar measurements using nonparametric kernel regression methods,” Appl. Phys. B 74, 155–165 (2002).
[CrossRef]

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

2001 (1)

1998 (4)

V. Raimondi, G. Cecchi, L. Pantani, R. Chiari, “Fluorescence lidar monitoring of historical buildings,” Appl. Opt. 37, 1089–1098 (1998).
[CrossRef]

P. Weibring, M. Andersson, H. Edner, S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383–388 (1998).
[CrossRef]

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne laser-induced oceanic chlorophyll fluorescence: solar-induced quenching corrections by use of concurrent downwelling irradiance measurements,” Appl. Opt. 87, 3222–3226 (1998).
[CrossRef]

1996 (1)

A. S. Bangalore, R. A. Schaffer, G. W. Small, M. A. Arnold, “Genetic algorithm-based method for selecting wavelength and model size for use with partial least-squares regression: application to near-infrared spectroscopy,” Anal. Chem. 68, 4200–4212 (1996).
[CrossRef] [PubMed]

1995 (1)

S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. T58, 79–85 (1995).
[CrossRef]

1994 (2)

S. A. Hsu, E. A. Meindl, G. B. Gilhousen, “Determining the power-law wind-profile exponent under near-stability conditions at sea,” Appl. Metrol. 33, 757–765 (1994).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
[CrossRef] [PubMed]

1992 (1)

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
[CrossRef]

1989 (1)

1987 (1)

1981 (1)

Abrahamsson, Ch.

P. Weibring, Ch. Abrahamsson, M. Sjöholm, J. N. Smith, H. Edner, S. Svanberg are preparing a manuscript titled “Multicomponent chemical analysis of gas mixtures using a continuously-tuneable lidar system.

Andersson, M.

P. Weibring, M. Andersson, H. Edner, S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383–388 (1998).
[CrossRef]

Arnold, M. A.

A. S. Bangalore, R. A. Schaffer, G. W. Small, M. A. Arnold, “Genetic algorithm-based method for selecting wavelength and model size for use with partial least-squares regression: application to near-infrared spectroscopy,” Anal. Chem. 68, 4200–4212 (1996).
[CrossRef] [PubMed]

Bangalore, A. S.

A. S. Bangalore, R. A. Schaffer, G. W. Small, M. A. Arnold, “Genetic algorithm-based method for selecting wavelength and model size for use with partial least-squares regression: application to near-infrared spectroscopy,” Anal. Chem. 68, 4200–4212 (1996).
[CrossRef] [PubMed]

Barbini, R.

L. Fiorani, R. Barbini, F. Colao, R. Fantoni, R. Palucci, “Comparison between satellite and laser remote sensing of the Southern Ocean,” J. Comput. Technol. 7, 110–120 (2002).

Calpini, B.

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Caltabiano, T.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

Cecchi, C.

D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).

Cecchi, G.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, R. Chiari, “Fluorescence lidar monitoring of historical buildings,” Appl. Opt. 37, 1089–1098 (1998).
[CrossRef]

I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).

Chiari, R.

V. Raimondi, G. Cecchi, L. Pantani, R. Chiari, “Fluorescence lidar monitoring of historical buildings,” Appl. Opt. 37, 1089–1098 (1998).
[CrossRef]

D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).

Colao, F.

L. Fiorani, R. Barbini, F. Colao, R. Fantoni, R. Palucci, “Comparison between satellite and laser remote sensing of the Southern Ocean,” J. Comput. Technol. 7, 110–120 (2002).

Condarelli, D.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

de Liso, A.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
[CrossRef]

Durieux, E.

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Edner, H.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

T. Lindström, U. Holst, P. Weibring, H. Edner, “Analysis of lidar measurements using nonparametric kernel regression methods,” Appl. Phys. B 74, 155–165 (2002).
[CrossRef]

P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
[CrossRef]

P. Weibring, M. Andersson, H. Edner, S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383–388 (1998).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
[CrossRef] [PubMed]

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
[CrossRef]

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, 921–930 (1989).
[CrossRef] [PubMed]

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
[CrossRef] [PubMed]

P. Weibring, Ch. Abrahamsson, M. Sjöholm, J. N. Smith, H. Edner, S. Svanberg are preparing a manuscript titled “Multicomponent chemical analysis of gas mixtures using a continuously-tuneable lidar system.

D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

P. Weibring, J. N. Smith, H. Edner, S. Svanberg, “Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instrum., submitted for publication.

I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).

Esbensen, K.

K. Esbensen, Multivariate Analysis, 5th ed. (CAMO, Oslo, 2001).

Fantoni, R.

L. Fiorani, R. Barbini, F. Colao, R. Fantoni, R. Palucci, “Comparison between satellite and laser remote sensing of the Southern Ocean,” J. Comput. Technol. 7, 110–120 (2002).

Faris, G. W.

Ferrara, R.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
[CrossRef]

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

Fiorani, L.

L. Fiorani, R. Barbini, F. Colao, R. Fantoni, R. Palucci, “Comparison between satellite and laser remote sensing of the Southern Ocean,” J. Comput. Technol. 7, 110–120 (2002).

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Fredriksson, K.

Galle, B.

Gilhousen, G. B.

S. A. Hsu, E. A. Meindl, G. B. Gilhousen, “Determining the power-law wind-profile exponent under near-stability conditions at sea,” Appl. Metrol. 33, 757–765 (1994).
[CrossRef]

Hoge, F. E.

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne laser-induced oceanic chlorophyll fluorescence: solar-induced quenching corrections by use of concurrent downwelling irradiance measurements,” Appl. Opt. 87, 3222–3226 (1998).
[CrossRef]

Holst, U.

T. Lindström, U. Holst, P. Weibring, H. Edner, “Analysis of lidar measurements using nonparametric kernel regression methods,” Appl. Phys. B 74, 155–165 (2002).
[CrossRef]

Hsu, S. A.

S. A. Hsu, E. A. Meindl, G. B. Gilhousen, “Determining the power-law wind-profile exponent under near-stability conditions at sea,” Appl. Metrol. 33, 757–765 (1994).
[CrossRef]

Jaquet, L.

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Johansson, J.

Johansson, Th.

P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
[CrossRef]

D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).

I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).

Kent, J. K.

K. V. Mardia, J. K. Kent, Multivariate Analysis (Academic, London, 1979).

Lindström, T.

T. Lindström, U. Holst, P. Weibring, H. Edner, “Analysis of lidar measurements using nonparametric kernel regression methods,” Appl. Phys. B 74, 155–165 (2002).
[CrossRef]

Lognoli, D.

D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).

Mardia, K. V.

K. V. Mardia, J. K. Kent, Multivariate Analysis (Academic, London, 1979).

Maserti, B. E.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

Meindl, E. A.

S. A. Hsu, E. A. Meindl, G. B. Gilhousen, “Determining the power-law wind-profile exponent under near-stability conditions at sea,” Appl. Metrol. 33, 757–765 (1994).
[CrossRef]

Mellegård, F.

F. Mellegård, “Development and construction of an automatic calibration unit for a differential absorption lidar system,” diploma paper, Lund Reports on Atomic Physics, LRAP 264 (Lund Institute of Technology, Lund, Sweden, 2000).

Milton, M. J. T.

R. A. Robinson, P. T. Woods, M. J. T. Milton, “DIAL measurements for air pollution and fugative-loss monitoring,” in Air Pollution and Visibility Measurements, Proc. SPIE2506, 140–149 (1995).
[CrossRef]

Mochi, I.

I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).

Munthe, J.

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

Nyström, K.

Palucci, R.

L. Fiorani, R. Barbini, F. Colao, R. Fantoni, R. Palucci, “Comparison between satellite and laser remote sensing of the Southern Ocean,” J. Comput. Technol. 7, 110–120 (2002).

Pantani, L.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, R. Chiari, “Fluorescence lidar monitoring of historical buildings,” Appl. Opt. 37, 1089–1098 (1998).
[CrossRef]

D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).

I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).

Ragnarson, P.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
[CrossRef]

Raimondi, V.

Robinson, R. A.

R. A. Robinson, P. T. Woods, M. J. T. Milton, “DIAL measurements for air pollution and fugative-loss monitoring,” in Air Pollution and Visibility Measurements, Proc. SPIE2506, 140–149 (1995).
[CrossRef]

Schaffer, R. A.

A. S. Bangalore, R. A. Schaffer, G. W. Small, M. A. Arnold, “Genetic algorithm-based method for selecting wavelength and model size for use with partial least-squares regression: application to near-infrared spectroscopy,” Anal. Chem. 68, 4200–4212 (1996).
[CrossRef] [PubMed]

Sjöholm, M.

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

P. Weibring, Ch. Abrahamsson, M. Sjöholm, J. N. Smith, H. Edner, S. Svanberg are preparing a manuscript titled “Multicomponent chemical analysis of gas mixtures using a continuously-tuneable lidar system.

Small, G. W.

A. S. Bangalore, R. A. Schaffer, G. W. Small, M. A. Arnold, “Genetic algorithm-based method for selecting wavelength and model size for use with partial least-squares regression: application to near-infrared spectroscopy,” Anal. Chem. 68, 4200–4212 (1996).
[CrossRef] [PubMed]

Smith, J. N.

P. Weibring, J. N. Smith, H. Edner, S. Svanberg, “Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instrum., submitted for publication.

P. Weibring, Ch. Abrahamsson, M. Sjöholm, J. N. Smith, H. Edner, S. Svanberg are preparing a manuscript titled “Multicomponent chemical analysis of gas mixtures using a continuously-tuneable lidar system.

Sommar, J.

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

Sundnér, B.

Sunesson, A.

Svanberg, S.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
[CrossRef]

P. Weibring, M. Andersson, H. Edner, S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383–388 (1998).
[CrossRef]

S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. T58, 79–85 (1995).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
[CrossRef] [PubMed]

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
[CrossRef]

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, 921–930 (1989).
[CrossRef] [PubMed]

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
[CrossRef] [PubMed]

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Mobile lidar system for environmental probing,” Appl. Opt. 20, 4181–4185 (1981).
[CrossRef] [PubMed]

P. Weibring, Ch. Abrahamsson, M. Sjöholm, J. N. Smith, H. Edner, S. Svanberg are preparing a manuscript titled “Multicomponent chemical analysis of gas mixtures using a continuously-tuneable lidar system.

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).

S. Svanberg, “Differential absorption lidar (DIAL),” in Air Monitoring by Spectroscopic Techniques, M. Sigrist, ed. (Wiley, New York, 1994).

P. Weibring, J. N. Smith, H. Edner, S. Svanberg, “Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instrum., submitted for publication.

I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).

Swartling, J.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

Swift, R. N.

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne laser-induced oceanic chlorophyll fluorescence: solar-induced quenching corrections by use of concurrent downwelling irradiance measurements,” Appl. Opt. 87, 3222–3226 (1998).
[CrossRef]

Unéus, L.

van den Bergh, H.

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Wallinder, E.

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
[CrossRef] [PubMed]

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
[CrossRef]

Wängberg, I.

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

Weibring, P.

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

T. Lindström, U. Holst, P. Weibring, H. Edner, “Analysis of lidar measurements using nonparametric kernel regression methods,” Appl. Phys. B 74, 155–165 (2002).
[CrossRef]

P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
[CrossRef]

P. Weibring, M. Andersson, H. Edner, S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383–388 (1998).
[CrossRef]

P. Weibring, “Environmental monitoring by multi-spectral lidar techniques,” Ph. D. dissertation, Lund Reports on Atomic Physics, LRAP-284 (Lund Institute of Technology, Lund, Sweden, 2002).

P. Weibring, Ch. Abrahamsson, M. Sjöholm, J. N. Smith, H. Edner, S. Svanberg are preparing a manuscript titled “Multicomponent chemical analysis of gas mixtures using a continuously-tuneable lidar system.

P. Weibring, J. N. Smith, H. Edner, S. Svanberg, “Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instrum., submitted for publication.

I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).

Wendt, W.

Woods, P. T.

R. A. Robinson, P. T. Woods, M. J. T. Milton, “DIAL measurements for air pollution and fugative-loss monitoring,” in Air Pollution and Visibility Measurements, Proc. SPIE2506, 140–149 (1995).
[CrossRef]

Wright, C. W.

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne laser-induced oceanic chlorophyll fluorescence: solar-induced quenching corrections by use of concurrent downwelling irradiance measurements,” Appl. Opt. 87, 3222–3226 (1998).
[CrossRef]

Yungel, J. K.

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne laser-induced oceanic chlorophyll fluorescence: solar-induced quenching corrections by use of concurrent downwelling irradiance measurements,” Appl. Opt. 87, 3222–3226 (1998).
[CrossRef]

Zanzillotta, E.

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

Anal. Chem. (1)

A. S. Bangalore, R. A. Schaffer, G. W. Small, M. A. Arnold, “Genetic algorithm-based method for selecting wavelength and model size for use with partial least-squares regression: application to near-infrared spectroscopy,” Anal. Chem. 68, 4200–4212 (1996).
[CrossRef] [PubMed]

Appl. Metrol. (1)

S. A. Hsu, E. A. Meindl, G. B. Gilhousen, “Determining the power-law wind-profile exponent under near-stability conditions at sea,” Appl. Metrol. 33, 757–765 (1994).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (2)

P. Weibring, M. Andersson, H. Edner, S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383–388 (1998).
[CrossRef]

T. Lindström, U. Holst, P. Weibring, H. Edner, “Analysis of lidar measurements using nonparametric kernel regression methods,” Appl. Phys. B 74, 155–165 (2002).
[CrossRef]

Atmos. Environ. (1)

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

J. Comput. Technol. (1)

L. Fiorani, R. Barbini, F. Colao, R. Fantoni, R. Palucci, “Comparison between satellite and laser remote sensing of the Southern Ocean,” J. Comput. Technol. 7, 110–120 (2002).

J. Geophys. Res. (1)

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
[CrossRef]

Optics Lasers Eng. (1)

P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
[CrossRef]

Phys. Scr. (1)

S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. T58, 79–85 (1995).
[CrossRef]

Other (12)

I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).

P. Weibring, Ch. Abrahamsson, M. Sjöholm, J. N. Smith, H. Edner, S. Svanberg are preparing a manuscript titled “Multicomponent chemical analysis of gas mixtures using a continuously-tuneable lidar system.

K. V. Mardia, J. K. Kent, Multivariate Analysis (Academic, London, 1979).

K. Esbensen, Multivariate Analysis, 5th ed. (CAMO, Oslo, 2001).

I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

S. Svanberg, “Differential absorption lidar (DIAL),” in Air Monitoring by Spectroscopic Techniques, M. Sigrist, ed. (Wiley, New York, 1994).

R. A. Robinson, P. T. Woods, M. J. T. Milton, “DIAL measurements for air pollution and fugative-loss monitoring,” in Air Pollution and Visibility Measurements, Proc. SPIE2506, 140–149 (1995).
[CrossRef]

P. Weibring, J. N. Smith, H. Edner, S. Svanberg, “Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instrum., submitted for publication.

F. Mellegård, “Development and construction of an automatic calibration unit for a differential absorption lidar system,” diploma paper, Lund Reports on Atomic Physics, LRAP 264 (Lund Institute of Technology, Lund, Sweden, 2000).

D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).

P. Weibring, “Environmental monitoring by multi-spectral lidar techniques,” Ph. D. dissertation, Lund Reports on Atomic Physics, LRAP-284 (Lund Institute of Technology, Lund, Sweden, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Overviews of the mobile lidar system seen from the side and above. They show the standard atmospheric measurement transmission scenario, the arrangement for marine measurements by use of an additional folding mirror, and finally, that for vertical sounding with the transmission dome removed. OPO, optical parametric oscillator; OMA, optical multichannel analyzer.

Fig. 2
Fig. 2

Two photographs from the bus interior. (a) The control section of the mobile lidar system with the first author. (b) The Nd:YAG laser pumping the OPO unit followed by the IR-mixing unit. Also shown is the vertically looking telescope. In the background, parts of a gas-calibration manifold are shown.

Fig. 3
Fig. 3

Overview of the system components and their interconnects and control functions. PMT, photomultiplier tube; LAN, local area network.

Fig. 4
Fig. 4

Screen dump from the wavelength definition menu showing multiwavelength selection for a mixture of methane, ethane, and propane. Seven wavelengths, indicated by a-g, are marked.

Fig. 5
Fig. 5

Screen dump of the measurement menu during an atomic mercury run. To the left, the on-and off-resonance averaged lidar curves are shown. Below, the on/off ratio curve is shown, and, at the bottom, the evaluated concentration curve, displays a plume at approximately 350 m in distance. To the lower right, a measurement definition with wavelength and spatial components is shown.

Fig. 6
Fig. 6

Atomic mercury concentration distribution retrieved in a vertical scan downwind from the Rosignano Solvay chlor-alkali plant in Italy. A screen dump from the presentation menu is shown, in which the image is built up by data of the type shown in Fig. 5.

Fig. 7
Fig. 7

(a) On- and off-resonance averaged lidar returns in vertical measurements under the volcanic plume of Mount Etna. (b) Sulfur dioxide distribution from Mount Etna as recorded with the lidar system firing vertically in a ship during a full underpass of the plume.

Fig. 8
Fig. 8

Remote lidar recording of methane streaming through a 0.4-m-diameter, 3-m-long open-ended tube positioned 60 m from the lidar system. A topographic target was placed behind the tube, and the transmitter was continuously tuned to produce a full spectrum. The signal remaining when the gas flow is shut off corresponds to the ambient air concentration of methane and the atmospheric concentration of water vapor.

Fig. 9
Fig. 9

(a) Range-resolved atmospheric backscattering lidar curve at 3.4 μm showing a range of approximately 200 m. (b)–(e) Partial data from a multigas, multiwavelength DIAL measurement involving 60 different transmission wavelengths. (b) Curve corresponds to methane, formed by division of an on-resonance wavelength curve by an off-resonance wavelength curve (wavelength positions b and a in Fig. 4). (c) The characteristic DIAL curve step is shown for ethane, corresponding to divided curves at wavelengths e and d in Fig. 4. (d) Corresponding data for propane are shown (wavelengths f and g in Fig. 4), and (e) transmission of two off-resonance wavelengths (c and d in Fig. 4) results in a ratio value of 1.0 and no trace of the flow-cell arrangement.

Fig. 10
Fig. 10

Fluorescence data obtained for Mediterranean water during a measurement campaign on board the Italian research vessel Urania. (a) The data shows increasing levels of DOM as the ship is entering the port of Civitavecchia. The recordings correspond to the integrated fluorescence intensity of the water column. (b) Two depth-resolved fluorescence curves showing the signal integrated over a 4-m column centered at approximately 4-and 8-m depths.

Fig. 11
Fig. 11

(bottom) Photograph and fluorescence image from a portion of the Parma cathedral, showing areas that had been subject to surface-protection treatments. Excitation of 355 nm was used, and the ratio intensity I(400 nm)/I(445 nm) is displayed. (top) Photograph and fluorescence image of the upper part of the baptistery in Parma showing areas with algae coverage. The intensity ratio I(685 nm)/I(645 nm) is displayed. Individual spectra are inserted to indicate the spectral basis of the discrimination. The total time for each image recording was approximately 2 h.

Fig. 12
Fig. 12

(bottom) Fluorescence spectra recorded from an arrangement of Italian marble slabs, by use of four excitation wavelengths. The different responses of different materials is illustrated. By use of multivariate analysis, the spectral data was combined to yield a consistent stone identification for the areas indicated in the upper right part of the figures.

Metrics