Abstract

Experimental determination of the electro-optic coefficient r 13 of a lithium niobate crystal is described. The crystal in this experiment is z cut, used as a substrate for a Fabry-Perot etalon. I computed the r 13 coefficient from the measured voltage tuning curve of the Fabry-Perot etalon. It is found that the measured value of r 13 is lower than most of the reported values in literature.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bonaccini, R. N. Smartt, “Lithium niobate double channel Fabry-Perot interferometer for solar corona uses,” Appl. Opt. 27, 5095–5102 (1988).
    [CrossRef] [PubMed]
  2. D. M. Rust, G. Murphy, K. Strohbehn, C. U. Keller, “Balloon-borne polarimetry: the flare genesis experiment,” Sol. Phys. 164, 403–415 (1996).
    [CrossRef]
  3. S. K. Mathew, A. Bhatnagar, C. D. Prasad, A. Ambstha, “Fabry-Perot filter-based solar video magnetograph,” Astron. Astrophys. Suppl. Ser. 133, 285–292 (1998).
    [CrossRef]
  4. E. H. Turner, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8, 303–304 (1966).
    [CrossRef]
  5. K. Onuki, N. Uchida, T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972).
    [CrossRef]
  6. N. Srivastava, S. K. Mathew, “A digital imaging multi-slit spectrograph for measurement of line-of-sight velocities on the Sun,” Sol. Phys. 185, 61–68 (1999).
    [CrossRef]
  7. C. H. Bruton, A. J. Leistner, D. M. Rust, “Electrooptic Fabry-Perot filter: development for the study of solar oscillations,” Appl. Opt. 26, 2637–2642 (1987).
    [CrossRef]
  8. G. D. Boyd, W. L. Bond, H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1944 (1966).
    [CrossRef]

1999

N. Srivastava, S. K. Mathew, “A digital imaging multi-slit spectrograph for measurement of line-of-sight velocities on the Sun,” Sol. Phys. 185, 61–68 (1999).
[CrossRef]

1998

S. K. Mathew, A. Bhatnagar, C. D. Prasad, A. Ambstha, “Fabry-Perot filter-based solar video magnetograph,” Astron. Astrophys. Suppl. Ser. 133, 285–292 (1998).
[CrossRef]

1996

D. M. Rust, G. Murphy, K. Strohbehn, C. U. Keller, “Balloon-borne polarimetry: the flare genesis experiment,” Sol. Phys. 164, 403–415 (1996).
[CrossRef]

1988

1987

1972

1966

E. H. Turner, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8, 303–304 (1966).
[CrossRef]

G. D. Boyd, W. L. Bond, H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1944 (1966).
[CrossRef]

Ambstha, A.

S. K. Mathew, A. Bhatnagar, C. D. Prasad, A. Ambstha, “Fabry-Perot filter-based solar video magnetograph,” Astron. Astrophys. Suppl. Ser. 133, 285–292 (1998).
[CrossRef]

Bhatnagar, A.

S. K. Mathew, A. Bhatnagar, C. D. Prasad, A. Ambstha, “Fabry-Perot filter-based solar video magnetograph,” Astron. Astrophys. Suppl. Ser. 133, 285–292 (1998).
[CrossRef]

Bonaccini, D.

Bond, W. L.

G. D. Boyd, W. L. Bond, H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1944 (1966).
[CrossRef]

Boyd, G. D.

G. D. Boyd, W. L. Bond, H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1944 (1966).
[CrossRef]

Bruton, C. H.

Carter, H. L.

G. D. Boyd, W. L. Bond, H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1944 (1966).
[CrossRef]

Keller, C. U.

D. M. Rust, G. Murphy, K. Strohbehn, C. U. Keller, “Balloon-borne polarimetry: the flare genesis experiment,” Sol. Phys. 164, 403–415 (1996).
[CrossRef]

Leistner, A. J.

Mathew, S. K.

N. Srivastava, S. K. Mathew, “A digital imaging multi-slit spectrograph for measurement of line-of-sight velocities on the Sun,” Sol. Phys. 185, 61–68 (1999).
[CrossRef]

S. K. Mathew, A. Bhatnagar, C. D. Prasad, A. Ambstha, “Fabry-Perot filter-based solar video magnetograph,” Astron. Astrophys. Suppl. Ser. 133, 285–292 (1998).
[CrossRef]

Murphy, G.

D. M. Rust, G. Murphy, K. Strohbehn, C. U. Keller, “Balloon-borne polarimetry: the flare genesis experiment,” Sol. Phys. 164, 403–415 (1996).
[CrossRef]

Onuki, K.

Prasad, C. D.

S. K. Mathew, A. Bhatnagar, C. D. Prasad, A. Ambstha, “Fabry-Perot filter-based solar video magnetograph,” Astron. Astrophys. Suppl. Ser. 133, 285–292 (1998).
[CrossRef]

Rust, D. M.

D. M. Rust, G. Murphy, K. Strohbehn, C. U. Keller, “Balloon-borne polarimetry: the flare genesis experiment,” Sol. Phys. 164, 403–415 (1996).
[CrossRef]

C. H. Bruton, A. J. Leistner, D. M. Rust, “Electrooptic Fabry-Perot filter: development for the study of solar oscillations,” Appl. Opt. 26, 2637–2642 (1987).
[CrossRef]

Saku, T.

Smartt, R. N.

Srivastava, N.

N. Srivastava, S. K. Mathew, “A digital imaging multi-slit spectrograph for measurement of line-of-sight velocities on the Sun,” Sol. Phys. 185, 61–68 (1999).
[CrossRef]

Strohbehn, K.

D. M. Rust, G. Murphy, K. Strohbehn, C. U. Keller, “Balloon-borne polarimetry: the flare genesis experiment,” Sol. Phys. 164, 403–415 (1996).
[CrossRef]

Turner, E. H.

E. H. Turner, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8, 303–304 (1966).
[CrossRef]

Uchida, N.

Appl. Opt.

Appl. Phys. Lett.

E. H. Turner, “High-frequency electro-optic coefficients of lithium niobate,” Appl. Phys. Lett. 8, 303–304 (1966).
[CrossRef]

Astron. Astrophys. Suppl. Ser.

S. K. Mathew, A. Bhatnagar, C. D. Prasad, A. Ambstha, “Fabry-Perot filter-based solar video magnetograph,” Astron. Astrophys. Suppl. Ser. 133, 285–292 (1998).
[CrossRef]

J. Appl. Phys.

G. D. Boyd, W. L. Bond, H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1944 (1966).
[CrossRef]

J. Opt. Soc. Am.

Sol. Phys.

D. M. Rust, G. Murphy, K. Strohbehn, C. U. Keller, “Balloon-borne polarimetry: the flare genesis experiment,” Sol. Phys. 164, 403–415 (1996).
[CrossRef]

N. Srivastava, S. K. Mathew, “A digital imaging multi-slit spectrograph for measurement of line-of-sight velocities on the Sun,” Sol. Phys. 185, 61–68 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for determining the parameters of lithium niobate Fabry-Perot etalon. M = mirror, G = grating, L = lens, F = wide band filters, FP = Fabry-Perot etalon, S = spectrograph entrance slit, SW = switch.

Fig. 2
Fig. 2

Observed (plusses) and fitted (solid curve) Fabry-Perot channel spectra. The dashed curve shows the channel spectrum after applying 1000 volts to the etalon. The dotted curve shows the solar spectrum. The deepest absorption line in the spectrum is at 6122.23 Å.

Fig. 3
Fig. 3

Voltage tuning curve for the LiNbO3 etalon filter. Plusses show the measured values, and the straight line is a linear fit to the measured values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FSR=λ2/2nd,
V1/2=λ0/2n03 r13

Metrics