Abstract

A local exposure of UV-sensitive polymers leads to a local curing. This corresponds to a saturable and irreversible nonlinear change of the refractive index, which evidently leads to a filamentation of the hardening polymer. This paper investigates the physical background of these effects and analyzes how the different influencing factors could be used for a steered, partly self-written formation of micro-optical structures. The structure formation is simulated on the basis of an iterative beam propagation method with consideration of a set of process parameters, e.g., the photoinitiator concentration or the exposure intensity. It is shown theoretically as well as experimentally that a variation of material- and exposure-specific process parameters gives opportunities for a controlled structure formation. The experimental realization of a configuration by use of a beam shaper within a UV contact exposure process is presented by means of the preparation of high-aspect-ratio conic structures.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178 (2001).
    [CrossRef]
  2. S. Maruo, O. Nakamura, S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [CrossRef] [PubMed]
  3. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
    [CrossRef]
  4. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035–1037 (1993).
    [CrossRef] [PubMed]
  5. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D. L. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860–5871 (2001).
    [CrossRef]
  6. A. S. Kewitsch, A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
    [CrossRef] [PubMed]
  7. T. M. Monro, L. Poladian, M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
    [CrossRef]
  8. D. Engin, A. S. Kewitsch, A. Yariv, “Holographic characterization of chain photopolymerization,” J. Opt. Soc. Am. B 16, 1213–1219 (1999).
    [CrossRef]
  9. G. Odian, Principles of Polymerization (Wiley, New York, 1991).
  10. H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compounds,” in Better Ceramics Through Chemistry V, M. J. Hampden-Smith, W. G. Klemperer, C. J. Brinker, eds., Mater. Res. Soc. Symp. Proc.271, 719–724 (1992).
    [CrossRef]
  11. T. Fliessbach, Elektrodynamik (BI Wissenschaftsverlag, Mannheim, Germany, 1994).
  12. U. Streppel, P. Dannberg, C. Waechter, A. Braeuer, “Realization of a vertical integration scheme for polymer waveguides by a novel stacking technology,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE4439, 72–79 (2001).
    [CrossRef]
  13. J. van Roey, J. van der Donk, P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981).
    [CrossRef]
  14. P. Dannberg, L. Erdmann, R. Bierbaum, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsystem Technol. 6, 41–47 (1999).
    [CrossRef]

2001 (2)

1999 (3)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

P. Dannberg, L. Erdmann, R. Bierbaum, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsystem Technol. 6, 41–47 (1999).
[CrossRef]

D. Engin, A. S. Kewitsch, A. Yariv, “Holographic characterization of chain photopolymerization,” J. Opt. Soc. Am. B 16, 1213–1219 (1999).
[CrossRef]

1998 (1)

T. M. Monro, L. Poladian, M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

1997 (1)

1996 (1)

1993 (1)

1981 (1)

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Bachelot, R.

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Bierbaum, R.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsystem Technol. 6, 41–47 (1999).
[CrossRef]

Braeuer, A.

U. Streppel, P. Dannberg, C. Waechter, A. Braeuer, “Realization of a vertical integration scheme for polymer waveguides by a novel stacking technology,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE4439, 72–79 (2001).
[CrossRef]

Bräuer, A.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsystem Technol. 6, 41–47 (1999).
[CrossRef]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Dannberg, P.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsystem Technol. 6, 41–47 (1999).
[CrossRef]

U. Streppel, P. Dannberg, C. Waechter, A. Braeuer, “Realization of a vertical integration scheme for polymer waveguides by a novel stacking technology,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE4439, 72–79 (2001).
[CrossRef]

de Sterke, M.

T. M. Monro, L. Poladian, M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

Deloeil, D.

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Ecoffet, C.

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Eldada, L.

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178 (2001).
[CrossRef]

Engin, D.

Erdmann, L.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsystem Technol. 6, 41–47 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Fliessbach, T.

T. Fliessbach, Elektrodynamik (BI Wissenschaftsverlag, Mannheim, Germany, 1994).

Frisken, S. J.

Glaubitt, W.

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compounds,” in Better Ceramics Through Chemistry V, M. J. Hampden-Smith, W. G. Klemperer, C. J. Brinker, eds., Mater. Res. Soc. Symp. Proc.271, 719–724 (1992).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Kawata, S.

Kewitsch, A. S.

Kley, E. B.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsystem Technol. 6, 41–47 (1999).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Lagasse, P. E.

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Lougnot, D. L.

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Maruo, S.

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Monro, T. M.

T. M. Monro, L. Poladian, M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

Nakamura, O.

Odian, G.

G. Odian, Principles of Polymerization (Wiley, New York, 1991).

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Poladian, L.

T. M. Monro, L. Poladian, M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Rose, K.

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compounds,” in Better Ceramics Through Chemistry V, M. J. Hampden-Smith, W. G. Klemperer, C. J. Brinker, eds., Mater. Res. Soc. Symp. Proc.271, 719–724 (1992).
[CrossRef]

Royer, P.

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Streppel, U.

U. Streppel, P. Dannberg, C. Waechter, A. Braeuer, “Realization of a vertical integration scheme for polymer waveguides by a novel stacking technology,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE4439, 72–79 (2001).
[CrossRef]

van der Donk, J.

van Roey, J.

Waechter, C.

U. Streppel, P. Dannberg, C. Waechter, A. Braeuer, “Realization of a vertical integration scheme for polymer waveguides by a novel stacking technology,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE4439, 72–79 (2001).
[CrossRef]

Wolter, H.

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compounds,” in Better Ceramics Through Chemistry V, M. J. Hampden-Smith, W. G. Klemperer, C. J. Brinker, eds., Mater. Res. Soc. Symp. Proc.271, 719–724 (1992).
[CrossRef]

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Yariv, A.

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Microsystem Technol. (1)

P. Dannberg, L. Erdmann, R. Bierbaum, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsystem Technol. 6, 41–47 (1999).
[CrossRef]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Opt. Eng. (1)

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178 (2001).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. E (1)

T. M. Monro, L. Poladian, M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

Other (4)

G. Odian, Principles of Polymerization (Wiley, New York, 1991).

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compounds,” in Better Ceramics Through Chemistry V, M. J. Hampden-Smith, W. G. Klemperer, C. J. Brinker, eds., Mater. Res. Soc. Symp. Proc.271, 719–724 (1992).
[CrossRef]

T. Fliessbach, Elektrodynamik (BI Wissenschaftsverlag, Mannheim, Germany, 1994).

U. Streppel, P. Dannberg, C. Waechter, A. Braeuer, “Realization of a vertical integration scheme for polymer waveguides by a novel stacking technology,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE4439, 72–79 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Self-organized pattern formation during UV flood exposure of a thick photosensitive ORMOCER 1 layer (top view, microscope image).

Fig. 2
Fig. 2

Chemical structure of ORMOCER polymers. Methoxy (Me) and phenyl (Ph) groups are linked to the inorganic Si&sngbnd;O backbone. R, organic side chain.

Fig. 3
Fig. 3

Nonlinear response of ORMOCER 1 with the parameter of exposure intensity (E). Symbols, measurements; curves, theoretical shapes. Photoinitiator (Irgacure 369) concentration is 1 wt. %. Measurement precision Δn ≤ 0.0002.

Fig. 4
Fig. 4

(a) Nonlinear response of ORMOCER 1 with parameter photoinitiator (Irgacure 369) concentration. Symbols, measurements; curves, theory. Exposure intensity is 2 mW/cm2. Measurement precision Δn ≤ 0.0002. (b) Absolute index change of ORMOCER 1 as a function of the photoinitiator (Irgacure 369) concentration.

Fig. 5
Fig. 5

Refractive index (ORMOCER 1) as a function of deposited energy for two photoinitiators (Irgacure 369, Lucirin TPO). Initiator concentration, 1 wt. % each. Measurement precision Δn ≤ 0.0002.

Fig. 6
Fig. 6

Flow chart of the 2D BPM simulation for a propagation in the yz plane. N, operator for the diffusion correction; P, operator for consideration of the development process.

Fig. 7
Fig. 7

(a)–(c) Refractive-index distribution achieved with BPM simulation with initial intensity profiles of different super-Gaussian orders: (a) m = 1, (b) m = 3, and (c) m = ∞. Diffusion is considered with D 0 = 0.01 μm/s2. Deposited energy of 200 mJ/cm2. One contour line is equal to Δn = 0.001. P Dthres = 0.1. (d)–(f) Refractive-index distribution achieved with BPM simulation of combined contact lithography. Initial intensity profiles of different super-Gaussian orders: (d) m = 1, (e) m = 3, and (f) m = ∞. Deposited energy of 200 mJ/cm2. Radius of curvature of microlens is 50 μm. Diffusion is considered with D 0 = 0.01 μm/s2. One contour line is equal to Δn = 0.001.

Fig. 8
Fig. 8

Refractive-index distribution for different initial phase distributions. (a) Divergent exposure with focal length -200 μm. (b) Convergent exposure with focal length 200 μm for m = ∞. [I 0] is 1 wt. % Irgacure 369; diffusion is considered with D 0 = 0.01 μm/s2. Deposited energy of 200 mJ/cm2. One contour line is equal to Δn = 0.001. P Dthres = 0.1.

Fig. 9
Fig. 9

Two-dimensional BPM simulation with different photoinitiator concentrations and diffusion constants. Resulting index distribution after 200 slopes for super-Gaussian order m = ∞. Radius of curvature of microlens is 50 μm. (a) and (b) for ORMOCER 1, and (c) for ORMOCER 2. One contour line is equal to Δn = 0.001. P Dthres = 0.1. (a) D 0 = 0.03 μm/s2, [I 0] = 1 wt. %. (b) D 0 = 0.01 μm/s2, [I 0] = 5 wt. %. (c) D 0 = 0.01 μm/s2, [I 0] = 1 wt. %.

Fig. 10
Fig. 10

Principle of (a) conventional and (b) combined contact exposure. (c) Structure obtained after development.

Fig. 11
Fig. 11

Array of circular apertures, used as a mask for combined contact lithography. Top part: concave microlenses fabricated on each aperture.

Fig. 12
Fig. 12

Array of high-aspect-ratio conic structures, fabricated with contact lithography (ORMOCER 1 with 1 wt. % photoinitiator Irgacure 369).

Fig. 13
Fig. 13

Array of high-aspect-ratio conic structures, fabricated with combined contact lithography (ORMOCER 1 with 1 wt. % photoinitiator Irgacure 369).

Fig. 14
Fig. 14

Cross section (after 160-μm propagation) of the index distribution after noncombined UV exposure, before development. Comparison of experimental and theoretical results. Deposited energy of 190 mJ/cm2.

Tables (1)

Tables Icon

Table 1 Total Index Changes for Two ORMOCERsa for Two Concentrations of Photoinitiator Irgacure 369

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A1y, z=I1y, zΔt
Aky, z=Ak-1y, z+Iky, zΔt.
Mz, tt=ΔDy, z, tMy, z, t,
D=D01-nky, znsat.
n=n0+β1-MM0,
Nn=nt=Dyny+Dznz+D2ny2+2nz2.
nendy, z=Pnkendy, z=nkendx, z;nkendy, znsaturationPD,thres1;nkendy, znsaturation<PD,thres.
-50μm50μmrectyddx=m-50μm50μmexp-yσm2mdy,
rectyd=1;-dyd0;else.
Θ=maximum diameterdiameter of footprint.

Metrics