Abstract

We show how a passive image-rotating optical resonator can be used to convert a linearly polarized, lowest-order Gaussian beam into a radially polarized beam. The image and polarization rotation of the cavity removes the frequency degeneracy of the modes, making it possible to select the radially polarized mode by cavity tuning. With the addition of gain, the same cavity should operate as a radially polarized laser when injection seeded at the proper wavelength.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. Gahagan, G. A. Swartzlander, “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533–537 (1999).
    [CrossRef]
  2. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
    [CrossRef]
  3. E. Abramochkin, N. Losevsky, V. Volostnikov, “Generation of spiral-type laser beams,” Opt. Commun. 141, 59–64 (1997).
    [CrossRef]
  4. R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
    [CrossRef]
  5. V. G. Niziev, A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
    [CrossRef]
  6. S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [CrossRef]
  7. L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [CrossRef] [PubMed]
  8. L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
    [CrossRef]
  9. C. Varin, M. Piche, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
    [CrossRef]
  10. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. Am. A 15, 2705–2711 (1998).
    [CrossRef]
  11. M. E. Maric, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
    [CrossRef]
  12. K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Exp. 7, 77–87 (2000), http://www.opticsexpress.org .
    [CrossRef]
  13. S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
    [CrossRef] [PubMed]
  14. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
    [CrossRef] [PubMed]
  15. T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
    [CrossRef]
  16. Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
    [CrossRef]
  17. Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
    [CrossRef]
  18. Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
    [CrossRef]
  19. J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser,” IEEE J. Quantum Electron. QE-10, 125–127 (1974).
    [CrossRef]
  20. D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
    [CrossRef]
  21. A. A. Tovar, G. H. Clark, “Concentric-circle-grating, surface-emitting laser beam propagation in complex optical systems,” J. Opt. Soc. Am. A 14, 3333–3340 (1997).
    [CrossRef]
  22. R. H. Jordan, D. G. Hall, O. King, G. Wicks, S. Rishton, “Lasing behavior of circular grating surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997).
    [CrossRef]
  23. A. V. Smith, D. J. Armstrong, “Nanosecond optical parametric oscillator with 90° image rotation: design and performance,” J. Opt. Soc. Am. B. 19, 1801–1814 (2002).
    [CrossRef]
  24. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingham, S. Stankovic, T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351–1353 (2002).
    [CrossRef]
  25. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B: Quantum Semiclassical Opt. 4, S1–S10 (2002).
    [CrossRef]

2002 (6)

C. Varin, M. Piche, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

A. V. Smith, D. J. Armstrong, “Nanosecond optical parametric oscillator with 90° image rotation: design and performance,” J. Opt. Soc. Am. B. 19, 1801–1814 (2002).
[CrossRef]

S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B: Quantum Semiclassical Opt. 4, S1–S10 (2002).
[CrossRef]

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[CrossRef]

Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[CrossRef]

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingham, S. Stankovic, T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351–1353 (2002).
[CrossRef]

2001 (2)

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

2000 (4)

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Exp. 7, 77–87 (2000), http://www.opticsexpress.org .
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (4)

A. A. Tovar, G. H. Clark, “Concentric-circle-grating, surface-emitting laser beam propagation in complex optical systems,” J. Opt. Soc. Am. A 14, 3333–3340 (1997).
[CrossRef]

R. H. Jordan, D. G. Hall, O. King, G. Wicks, S. Rishton, “Lasing behavior of circular grating surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997).
[CrossRef]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

E. Abramochkin, N. Losevsky, V. Volostnikov, “Generation of spiral-type laser beams,” Opt. Commun. 141, 59–64 (1997).
[CrossRef]

1993 (1)

1990 (1)

1981 (1)

M. E. Maric, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
[CrossRef]

1974 (1)

J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser,” IEEE J. Quantum Electron. QE-10, 125–127 (1974).
[CrossRef]

1972 (2)

D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

Abramochkin, E.

E. Abramochkin, N. Losevsky, V. Volostnikov, “Generation of spiral-type laser beams,” Opt. Commun. 141, 59–64 (1997).
[CrossRef]

Armstrong, D. J.

A. V. Smith, D. J. Armstrong, “Nanosecond optical parametric oscillator with 90° image rotation: design and performance,” J. Opt. Soc. Am. B. 19, 1801–1814 (2002).
[CrossRef]

Babzien, M.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Barnett, S. M.

S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B: Quantum Semiclassical Opt. 4, S1–S10 (2002).
[CrossRef]

Ben-Zvi, I.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

Biener, G.

Bomzon, Z.

Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Exp. 7, 77–87 (2000), http://www.opticsexpress.org .
[CrossRef]

Campbell, L. P.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Clark, G. H.

Cline, D. B.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Courjon, D.

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[CrossRef]

Davidson, N.

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

Dilley, C. E.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Ford, D. H.

Friesem, A. A.

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

Gahagan, K. T.

Gallardo, J. C.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Gan, X.

Ganic, D.

Garmire, E.

M. E. Maric, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
[CrossRef]

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Gottschalk, S. C.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Grosjean, T.

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[CrossRef]

Gu, M.

Hain, M.

Hall, D. G.

Hasman, E.

Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

He, P.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Jordan, R. H.

Kim, G. H.

Kimura, W. D.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
[CrossRef] [PubMed]

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
[CrossRef] [PubMed]

King, O.

Kleiner, V.

Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Kusche, K. P.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Liu, Y.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Losevsky, N.

E. Abramochkin, N. Losevsky, V. Volostnikov, “Generation of spiral-type laser beams,” Opt. Commun. 141, 59–64 (1997).
[CrossRef]

Maric, M. E.

M. E. Maric, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
[CrossRef]

Matsumura, K.

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

Mushiake, Y.

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

Nakajima, N.

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

Nesterov, A. V.

V. G. Niziev, A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev, A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

Oron, R.

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

Pantell, R. H.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Piche, M.

C. Varin, M. Piche, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Pogorelsky, I. V.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Pohl, D.

D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Quimby, D. C.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Rishton, S.

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Skaritka, J. R.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Smith, A. V.

A. V. Smith, D. J. Armstrong, “Nanosecond optical parametric oscillator with 90° image rotation: design and performance,” J. Opt. Soc. Am. B. 19, 1801–1814 (2002).
[CrossRef]

Somalingham, S.

Spajer, M.

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[CrossRef]

Stankovic, S.

Steinhauer, L. C.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Swartzlander, G. A.

Tidwell, S. C.

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Tovar, A. A.

Tschudi, T.

van Steenbergen, A.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Varin, C.

C. Varin, M. Piche, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Volostnikov, V.

E. Abramochkin, N. Losevsky, V. Volostnikov, “Generation of spiral-type laser beams,” Opt. Commun. 141, 59–64 (1997).
[CrossRef]

Wicks, G.

Wynne, J. J.

J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser,” IEEE J. Quantum Electron. QE-10, 125–127 (1974).
[CrossRef]

Yakimenko, V. E.

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Exp. 7, 77–87 (2000), http://www.opticsexpress.org .
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

C. Varin, M. Piche, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

M. E. Maric, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
[CrossRef]

D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser,” IEEE J. Quantum Electron. QE-10, 125–127 (1974).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B: Quantum Semiclassical Opt. 4, S1–S10 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Am. B. (1)

A. V. Smith, D. J. Armstrong, “Nanosecond optical parametric oscillator with 90° image rotation: design and performance,” J. Opt. Soc. Am. B. 19, 1801–1814 (2002).
[CrossRef]

J. Phys. D (1)

V. G. Niziev, A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Opt. Commun. (4)

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

E. Abramochkin, N. Losevsky, V. Volostnikov, “Generation of spiral-type laser beams,” Opt. Commun. 141, 59–64 (1997).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[CrossRef]

Opt. Exp. (1)

K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Exp. 7, 77–87 (2000), http://www.opticsexpress.org .
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Proc. IEEE (1)

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Three cylindrically polarized modes: azimuthally polarized (upper right), radially polarized (lower left), hybrid polarized (upper left). The half-wave retarders, oriented as shown, convert between the adjacent polarization modes.

Fig. 2
Fig. 2

Image-rotating optical cavity. Light enters through mirror M 1 and exits through mirror M 2. The reflection plane at M 2 is horizontal (h), the reflection plane at M 1 is vertical (v). With the leg lengths L 1= L 3 = 2 L 2 =2 L 4, the cavity produces a 90° image rotation on each round trip. The cylinder is an optional, isotropic gain medium.

Fig. 3
Fig. 3

Beams from cavity passes 1, 2, 3, and 4 as seen at the exit mirror M 2. The input beam is offset from the cavity axis, which is indicated by the center dot. The cavity rotates both the beam position and the polarization angle by 90°. The cavity length is adjusted to give the phases as shown, resulting in a radially polarized beam. If the input polarization is rotated by 90°, the beam is azimuthally polarized. If the cavity length is changed by λ/2, the mode is hybrid polarized, as shown in Fig. 1.

Fig. 4
Fig. 4

Measured irradiance profile of a radially polarized hollow beam.

Fig. 5
Fig. 5

Measured irradiance profiles after passing through a linear polarizer. (a) Pattern for a radially polarized beam. When the polarizer was rotated, the pattern rotated in the same direction as the polarizer. (b) Pattern for a hybrid polarized beam. When the polarizer was rotated, the pattern rotated in the opposite direction as the polarizer.

Fig. 6
Fig. 6

Resonances versus cavity length. The right- and left-circularly polarized resonances are offset by λ/2 and support the filled beams. Tuned midway between the LCP and the RCP resonances, the cavity supports vortex modes of each polarization but with opposite vorticities or charges. One combination of vortex modes is the radially polarized beam, the other is the hybrid polarized beam.

Fig. 7
Fig. 7

(a) Schematic of the polarization distribution when the incident light is circularly polarized and the cavity is tuned to resonance. The beam is filled in because there is no phase reversal on opposite sides of the beam. (b) Schematic of the polarization distribution when the cavity is lengthened by λ/4 to produce a circularly polarized vortex beam.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E=E0vh,
Mroundtrip=Mrot,90Mref,1Mrot,45Mref,4× Mrot,90Mref,3Mrot,45Mref,2,
Mref,i= rsi00rpi expiϕi,
Mrot,45= 1211-11.
Mref,4Mrot,90Mref,3=rsrp expiϕ01-10,
Mroundtrip=rsrp expiϕ× 0-rp2rp1 expiϕ1+iϕ2rs1rs20.
Mroundtrip=0.91 0-0.870.950,
Mroundtrip=0.83 0-110.

Metrics