Abstract

A Raman scattering system was used to measure the O2 (a1Δ) yield and the chlorine utilization in a singlet oxygen generator of chemical oxygen iodine laser with nitrogen diluent. We present the results from the tests that conducted on a 0.1-mol/s jet-type singlet oxygen-iodine generator. On the basis of the current reported uncertainty of the Raman cross section, the error in the yield measurement is calculated to be less than 8%, and the error of the chlorine utilization is 12%.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. McDemott, N. R. Pchelkin, D. J. Benard, R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
    [CrossRef]
  2. K. A. Truesdell, S. E. Lamberson, “Philips Laboratory COIL technology overview,” in 9th International Symposium on Gas Flow and Chemical Lasers, C. Fotakis, C. Kalpouzos, G. Papazoglou, eds., Proc. SPIE1810, 476–492 (1992).
    [CrossRef]
  3. P. V. Avizonis, “Chemical pumped electronic transition lasers,” in Gas and Chemical Lasers, M. Onorato, ed. (Plenum, New York, 1982).
  4. F. L. Li, B. L. Yang, Q. Zhuang, “Theoretical study of optimum construction parameters of JSOG,” Chin. J. Quantum Electron. 16, 142–146 (1999), in Chinese.
  5. B. D. Barmashenko, A. Elior, E. Lebiush, S. Rosenwaks, “Modeling of mixing in chemical oxygen-iodine lasers: analytic and numerical solutions and comparison with experiments,” J. Appl. Phys. 75, 7653–7655 (1994).
    [CrossRef]
  6. N. N. Yuryshev, “Chemically pumped oxygen-iodine laser,” Quantum Electron. 23, 583–600 (1996).
  7. T. L. Rittenhouse, S. P. Phipps, C. A. Helms, “Performance of a high-efficiency 5-cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857–866 (1999).
    [CrossRef]
  8. A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small-scale, supersonic chemical oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
    [CrossRef]
  9. D. Furman, B. D. Barmashenko, S. Rosenwaks, “Diode-laser-based absorption spectroscopy diagnostics of a jet-type O2 (a1Δ) generator for chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 35, 540–547 (1999).
    [CrossRef]
  10. V. T. Gylys, L. F. Rubin, “Direct measurement of O2 (a1Δ) and O2 (X3∑) in chemical oxygen-iodine lasers with use of spontaneous Raman imaging,” Appl. Opt. 37, 1026–1031 (1998).
    [CrossRef]
  11. E. W. Rothe, P. Andresen, “Application of tunable excimer lasers to combustion diagnostics: a review,” Appl. Opt. 36, 3971–4033 (1997).
    [CrossRef] [PubMed]
  12. L. F. Rubin, V. T. Gylys, “Measurement of the Raman cross section of O2 (a1Δg),” Opt. Lett. 22, 1347–1349 (1997).
    [CrossRef]
  13. B. J. Fang, F. T. Sang, L. Y. Wei, “BHP surface temperature rise and water vapour content in JSOG,” High Power Laser Particle Beams 13, 27–30 (2001), in Chinese.
  14. Q. Zhuang, F. T. Sang, D. Z. Zhou, Short Wavelength Chemical Laser (Publishing House of National Defense and Industry, Beijing, China, 1997), p. 28, in Chinese.
  15. W. E. McDemott, “Measurement of the O2(a1Δ) - O2 (X3∑) ratio using Raman spectroscopy,” in Gas, Chemical, and Electrical Lasers and Intense Beam Control and Applications, S. Basu, S. J. Davis, E. A. Dorko, eds., Proc. SPIE3931, 131–137 (2000).
    [CrossRef]

2001 (1)

B. J. Fang, F. T. Sang, L. Y. Wei, “BHP surface temperature rise and water vapour content in JSOG,” High Power Laser Particle Beams 13, 27–30 (2001), in Chinese.

1999 (3)

T. L. Rittenhouse, S. P. Phipps, C. A. Helms, “Performance of a high-efficiency 5-cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857–866 (1999).
[CrossRef]

F. L. Li, B. L. Yang, Q. Zhuang, “Theoretical study of optimum construction parameters of JSOG,” Chin. J. Quantum Electron. 16, 142–146 (1999), in Chinese.

D. Furman, B. D. Barmashenko, S. Rosenwaks, “Diode-laser-based absorption spectroscopy diagnostics of a jet-type O2 (a1Δ) generator for chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 35, 540–547 (1999).
[CrossRef]

1998 (1)

1997 (2)

1996 (1)

N. N. Yuryshev, “Chemically pumped oxygen-iodine laser,” Quantum Electron. 23, 583–600 (1996).

1995 (1)

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small-scale, supersonic chemical oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

1994 (1)

B. D. Barmashenko, A. Elior, E. Lebiush, S. Rosenwaks, “Modeling of mixing in chemical oxygen-iodine lasers: analytic and numerical solutions and comparison with experiments,” J. Appl. Phys. 75, 7653–7655 (1994).
[CrossRef]

1978 (1)

W. E. McDemott, N. R. Pchelkin, D. J. Benard, R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Andresen, P.

Avizonis, P. V.

P. V. Avizonis, “Chemical pumped electronic transition lasers,” in Gas and Chemical Lasers, M. Onorato, ed. (Plenum, New York, 1982).

Barmashenko, B. D.

D. Furman, B. D. Barmashenko, S. Rosenwaks, “Diode-laser-based absorption spectroscopy diagnostics of a jet-type O2 (a1Δ) generator for chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 35, 540–547 (1999).
[CrossRef]

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small-scale, supersonic chemical oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

B. D. Barmashenko, A. Elior, E. Lebiush, S. Rosenwaks, “Modeling of mixing in chemical oxygen-iodine lasers: analytic and numerical solutions and comparison with experiments,” J. Appl. Phys. 75, 7653–7655 (1994).
[CrossRef]

Benard, D. J.

W. E. McDemott, N. R. Pchelkin, D. J. Benard, R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Bousek, R. R.

W. E. McDemott, N. R. Pchelkin, D. J. Benard, R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Elior, A.

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small-scale, supersonic chemical oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

B. D. Barmashenko, A. Elior, E. Lebiush, S. Rosenwaks, “Modeling of mixing in chemical oxygen-iodine lasers: analytic and numerical solutions and comparison with experiments,” J. Appl. Phys. 75, 7653–7655 (1994).
[CrossRef]

Fang, B. J.

B. J. Fang, F. T. Sang, L. Y. Wei, “BHP surface temperature rise and water vapour content in JSOG,” High Power Laser Particle Beams 13, 27–30 (2001), in Chinese.

Furman, D.

D. Furman, B. D. Barmashenko, S. Rosenwaks, “Diode-laser-based absorption spectroscopy diagnostics of a jet-type O2 (a1Δ) generator for chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 35, 540–547 (1999).
[CrossRef]

Gylys, V. T.

Helms, C. A.

T. L. Rittenhouse, S. P. Phipps, C. A. Helms, “Performance of a high-efficiency 5-cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857–866 (1999).
[CrossRef]

Lamberson, S. E.

K. A. Truesdell, S. E. Lamberson, “Philips Laboratory COIL technology overview,” in 9th International Symposium on Gas Flow and Chemical Lasers, C. Fotakis, C. Kalpouzos, G. Papazoglou, eds., Proc. SPIE1810, 476–492 (1992).
[CrossRef]

Lebiush, E.

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small-scale, supersonic chemical oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

B. D. Barmashenko, A. Elior, E. Lebiush, S. Rosenwaks, “Modeling of mixing in chemical oxygen-iodine lasers: analytic and numerical solutions and comparison with experiments,” J. Appl. Phys. 75, 7653–7655 (1994).
[CrossRef]

Li, F. L.

F. L. Li, B. L. Yang, Q. Zhuang, “Theoretical study of optimum construction parameters of JSOG,” Chin. J. Quantum Electron. 16, 142–146 (1999), in Chinese.

McDemott, W. E.

W. E. McDemott, N. R. Pchelkin, D. J. Benard, R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

W. E. McDemott, “Measurement of the O2(a1Δ) - O2 (X3∑) ratio using Raman spectroscopy,” in Gas, Chemical, and Electrical Lasers and Intense Beam Control and Applications, S. Basu, S. J. Davis, E. A. Dorko, eds., Proc. SPIE3931, 131–137 (2000).
[CrossRef]

Pchelkin, N. R.

W. E. McDemott, N. R. Pchelkin, D. J. Benard, R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Phipps, S. P.

T. L. Rittenhouse, S. P. Phipps, C. A. Helms, “Performance of a high-efficiency 5-cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857–866 (1999).
[CrossRef]

Rittenhouse, T. L.

T. L. Rittenhouse, S. P. Phipps, C. A. Helms, “Performance of a high-efficiency 5-cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857–866 (1999).
[CrossRef]

Rosenwaks, S.

D. Furman, B. D. Barmashenko, S. Rosenwaks, “Diode-laser-based absorption spectroscopy diagnostics of a jet-type O2 (a1Δ) generator for chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 35, 540–547 (1999).
[CrossRef]

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small-scale, supersonic chemical oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

B. D. Barmashenko, A. Elior, E. Lebiush, S. Rosenwaks, “Modeling of mixing in chemical oxygen-iodine lasers: analytic and numerical solutions and comparison with experiments,” J. Appl. Phys. 75, 7653–7655 (1994).
[CrossRef]

Rothe, E. W.

Rubin, L. F.

Sang, F. T.

B. J. Fang, F. T. Sang, L. Y. Wei, “BHP surface temperature rise and water vapour content in JSOG,” High Power Laser Particle Beams 13, 27–30 (2001), in Chinese.

Q. Zhuang, F. T. Sang, D. Z. Zhou, Short Wavelength Chemical Laser (Publishing House of National Defense and Industry, Beijing, China, 1997), p. 28, in Chinese.

Truesdell, K. A.

K. A. Truesdell, S. E. Lamberson, “Philips Laboratory COIL technology overview,” in 9th International Symposium on Gas Flow and Chemical Lasers, C. Fotakis, C. Kalpouzos, G. Papazoglou, eds., Proc. SPIE1810, 476–492 (1992).
[CrossRef]

Wei, L. Y.

B. J. Fang, F. T. Sang, L. Y. Wei, “BHP surface temperature rise and water vapour content in JSOG,” High Power Laser Particle Beams 13, 27–30 (2001), in Chinese.

Yang, B. L.

F. L. Li, B. L. Yang, Q. Zhuang, “Theoretical study of optimum construction parameters of JSOG,” Chin. J. Quantum Electron. 16, 142–146 (1999), in Chinese.

Yuryshev, N. N.

N. N. Yuryshev, “Chemically pumped oxygen-iodine laser,” Quantum Electron. 23, 583–600 (1996).

Zhou, D. Z.

Q. Zhuang, F. T. Sang, D. Z. Zhou, Short Wavelength Chemical Laser (Publishing House of National Defense and Industry, Beijing, China, 1997), p. 28, in Chinese.

Zhuang, Q.

F. L. Li, B. L. Yang, Q. Zhuang, “Theoretical study of optimum construction parameters of JSOG,” Chin. J. Quantum Electron. 16, 142–146 (1999), in Chinese.

Q. Zhuang, F. T. Sang, D. Z. Zhou, Short Wavelength Chemical Laser (Publishing House of National Defense and Industry, Beijing, China, 1997), p. 28, in Chinese.

Appl. Opt. (2)

Appl. Phys. B (1)

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small-scale, supersonic chemical oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

W. E. McDemott, N. R. Pchelkin, D. J. Benard, R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Chin. J. Quantum Electron. (1)

F. L. Li, B. L. Yang, Q. Zhuang, “Theoretical study of optimum construction parameters of JSOG,” Chin. J. Quantum Electron. 16, 142–146 (1999), in Chinese.

High Power Laser Particle Beams (1)

B. J. Fang, F. T. Sang, L. Y. Wei, “BHP surface temperature rise and water vapour content in JSOG,” High Power Laser Particle Beams 13, 27–30 (2001), in Chinese.

IEEE J. Quantum Electron. (2)

T. L. Rittenhouse, S. P. Phipps, C. A. Helms, “Performance of a high-efficiency 5-cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857–866 (1999).
[CrossRef]

D. Furman, B. D. Barmashenko, S. Rosenwaks, “Diode-laser-based absorption spectroscopy diagnostics of a jet-type O2 (a1Δ) generator for chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 35, 540–547 (1999).
[CrossRef]

J. Appl. Phys. (1)

B. D. Barmashenko, A. Elior, E. Lebiush, S. Rosenwaks, “Modeling of mixing in chemical oxygen-iodine lasers: analytic and numerical solutions and comparison with experiments,” J. Appl. Phys. 75, 7653–7655 (1994).
[CrossRef]

Opt. Lett. (1)

Quantum Electron. (1)

N. N. Yuryshev, “Chemically pumped oxygen-iodine laser,” Quantum Electron. 23, 583–600 (1996).

Other (4)

K. A. Truesdell, S. E. Lamberson, “Philips Laboratory COIL technology overview,” in 9th International Symposium on Gas Flow and Chemical Lasers, C. Fotakis, C. Kalpouzos, G. Papazoglou, eds., Proc. SPIE1810, 476–492 (1992).
[CrossRef]

P. V. Avizonis, “Chemical pumped electronic transition lasers,” in Gas and Chemical Lasers, M. Onorato, ed. (Plenum, New York, 1982).

Q. Zhuang, F. T. Sang, D. Z. Zhou, Short Wavelength Chemical Laser (Publishing House of National Defense and Industry, Beijing, China, 1997), p. 28, in Chinese.

W. E. McDemott, “Measurement of the O2(a1Δ) - O2 (X3∑) ratio using Raman spectroscopy,” in Gas, Chemical, and Electrical Lasers and Intense Beam Control and Applications, S. Basu, S. J. Davis, E. A. Dorko, eds., Proc. SPIE3931, 131–137 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of experimental setup.

Fig. 2
Fig. 2

Raman spectrum of a sparger flow.

Fig. 3
Fig. 3

Relation of yield and pressure (nitrogen).

Fig. 4
Fig. 4

Relation of yield and pressure (no carrier).

Fig. 5
Fig. 5

Relation of yield and pressure (helium).

Fig. 6
Fig. 6

Relation of yield and proportion He:Cl2.

Fig. 7
Fig. 7

Relation of xRT and proportion He:Cl2.

Tables (1)

Tables Icon

Table 1 Series of Experimental Results on a 0.1-mol Jet-Type Singlet Oxygen-Iodine Generator

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

O2a1Δ+I2P3/2O2X3+I*2P1/2.
Cl2+H2O2+2KOHO2a1Δ+2H2O+2KCl.
Y=O2a1ΔO2a1Δ+O2X3.
a1=IO2a1Δ/σO2a1ΔIN2/σN2,
a2=IO2X3/σO2X3IN2/σN2,
O2N2=a1+a2.
η=NO2NCl2=O2N2 b=a1+a2b,
η=1.9 IO2a1ΔIN2+0.86 IO2X3IN2b,
Y=O2a1ΔO2a1Δ+O2X3 =IO2a1Δ/σO2aIO2a1Δ/σO2a+IO2X3/σO2X =IO2a1ΔIO2a1Δ+IO2X3σO2a/σO2X.
dηη=dIO2a1Δ+IO2X3βIO2a1Δ+IO2X3β+dIN2IN2
dYY=IO2X3βIO2a1Δ+IO2X3βdββ+dIO2X3IO2X3+dIO2a1ΔIO2a1Δ.

Metrics