Abstract

We report the modeling results of an all-fiber gas detector that uses photonic crystal fiber (PCF). The relative sensitivity of the PCF as a function of the fiber parameters is calculated. Gas-diffusion dynamics that affect the sensor response time is investigated theoretically and experimentally. A practical PCF sensor aiming for high sensitivity gas detection is proposed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, D. J. Richardson, P. J. Bennett, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
    [CrossRef]
  2. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
    [CrossRef]
  3. G. Stewart, W. Jin, B. Culshaw, “Prospects for fiber-optic evanescent-field gas sensors using absorption in the near field,” Sens. Actuators B 38, 42–47 (1997).
    [CrossRef]
  4. See www.crystalfiber.com .
  5. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
    [CrossRef]
  6. G. Stewart, J. Norris, D. F. Clark, B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).
  7. S. Seller, M. Zoboli, “Performance comparison of finite-element approaches for electromagnetic waveguides,” J. Opt. Soc. Am. A 14, 1460–1465 (1997).
    [CrossRef]
  8. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, New York, 1993), pp. 273–337.
  9. J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975), pp. 44–68, 160–202.
  10. C. L. Yaws, Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases (Gulf Publishing, Houston, Tex., 1995).
  11. E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge University, New York, 1997), pp. 173–184.
  12. R. E. Cunningham, R. J. J. Williams, Diffusion in Gases and Porous Media (Plenum, New York, 1980), pp. 145–151, 243–246.
    [CrossRef]
  13. K. Gyeong-il, P. In-shik, “Splicing losses between dissimilar optical waveguides,” J. Lightwave Technol. 17, 690–703 (1999).
    [CrossRef]
  14. K. S. Chiang, City University of Hong Kong, Hong Kong (personal communication, 2003).
  15. B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
    [CrossRef]
  16. H. L. Hoi, W. Jin, M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36, 1191–1193 (2000).
    [CrossRef]

2002 (1)

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

2000 (2)

H. L. Hoi, W. Jin, M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36, 1191–1193 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

1999 (2)

K. Gyeong-il, P. In-shik, “Splicing losses between dissimilar optical waveguides,” J. Lightwave Technol. 17, 690–703 (1999).
[CrossRef]

T. M. Monro, D. J. Richardson, P. J. Bennett, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

1998 (1)

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

1997 (2)

G. Stewart, W. Jin, B. Culshaw, “Prospects for fiber-optic evanescent-field gas sensors using absorption in the near field,” Sens. Actuators B 38, 42–47 (1997).
[CrossRef]

S. Seller, M. Zoboli, “Performance comparison of finite-element approaches for electromagnetic waveguides,” J. Opt. Soc. Am. A 14, 1460–1465 (1997).
[CrossRef]

1991 (1)

G. Stewart, J. Norris, D. F. Clark, B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Bennett, P. J.

T. M. Monro, D. J. Richardson, P. J. Bennett, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

Chiang, K. S.

K. S. Chiang, City University of Hong Kong, Hong Kong (personal communication, 2003).

Clark, D. F.

G. Stewart, J. Norris, D. F. Clark, B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Crank, J.

J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975), pp. 44–68, 160–202.

Culshaw, B.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

G. Stewart, W. Jin, B. Culshaw, “Prospects for fiber-optic evanescent-field gas sensors using absorption in the near field,” Sens. Actuators B 38, 42–47 (1997).
[CrossRef]

G. Stewart, J. Norris, D. F. Clark, B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Cunningham, R. E.

R. E. Cunningham, R. J. J. Williams, Diffusion in Gases and Porous Media (Plenum, New York, 1980), pp. 145–151, 243–246.
[CrossRef]

Cussler, E. L.

E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge University, New York, 1997), pp. 173–184.

Demokan, M. S.

H. L. Hoi, W. Jin, M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36, 1191–1193 (2000).
[CrossRef]

Dong, F.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

Gyeong-il, K.

Ho, H. L.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

Hoi, H. L.

H. L. Hoi, W. Jin, M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36, 1191–1193 (2000).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

In-shik, P.

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, New York, 1993), pp. 273–337.

Jin, W.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

H. L. Hoi, W. Jin, M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36, 1191–1193 (2000).
[CrossRef]

G. Stewart, W. Jin, B. Culshaw, “Prospects for fiber-optic evanescent-field gas sensors using absorption in the near field,” Sens. Actuators B 38, 42–47 (1997).
[CrossRef]

Monro, T. M.

T. M. Monro, D. J. Richardson, P. J. Bennett, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

Moodie, D.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

Norris, J.

G. Stewart, J. Norris, D. F. Clark, B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Ranka, J. K.

Richardson, D. J.

T. M. Monro, D. J. Richardson, P. J. Bennett, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

Seller, S.

Stentz, A. J.

Stewart, G.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

G. Stewart, W. Jin, B. Culshaw, “Prospects for fiber-optic evanescent-field gas sensors using absorption in the near field,” Sens. Actuators B 38, 42–47 (1997).
[CrossRef]

G. Stewart, J. Norris, D. F. Clark, B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Tandy, C.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

Wang, D. N.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

Williams, R. J. J.

R. E. Cunningham, R. J. J. Williams, Diffusion in Gases and Porous Media (Plenum, New York, 1980), pp. 145–151, 243–246.
[CrossRef]

Windeler, R. S.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

Yaws, C. L.

C. L. Yaws, Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases (Gulf Publishing, Houston, Tex., 1995).

Zoboli, M.

Electron. Lett. (2)

T. M. Monro, D. J. Richardson, P. J. Bennett, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

H. L. Hoi, W. Jin, M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36, 1191–1193 (2000).
[CrossRef]

Int. J. Optoelectron. (1)

G. Stewart, J. Norris, D. F. Clark, B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

Opt. Lett. (1)

Sens. Actuators B (2)

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[CrossRef]

G. Stewart, W. Jin, B. Culshaw, “Prospects for fiber-optic evanescent-field gas sensors using absorption in the near field,” Sens. Actuators B 38, 42–47 (1997).
[CrossRef]

Other (7)

See www.crystalfiber.com .

J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, New York, 1993), pp. 273–337.

J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975), pp. 44–68, 160–202.

C. L. Yaws, Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases (Gulf Publishing, Houston, Tex., 1995).

E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge University, New York, 1997), pp. 173–184.

R. E. Cunningham, R. J. J. Williams, Diffusion in Gases and Porous Media (Plenum, New York, 1980), pp. 145–151, 243–246.
[CrossRef]

K. S. Chiang, City University of Hong Kong, Hong Kong (personal communication, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

a, Quarter of the cross section showing the two innermost rings of Crystal Fiber’s PCF. The diameter of the central silica region is 1.7 μm. Λ = 3.24 μm and d = 3 μm. b, Shape of the holes in the innermost ring: d1 = 1.22 μm, d2 = 3 μm, b = 1.79 μm.

Fig. 2
Fig. 2

Quarter of the cross section of Lucent’s PCF: Λ = 1.55 μm and d = 1.4 μm.

Fig. 3
Fig. 3

Relative sensitivity of Crystal Fiber’s PCF as a function of wavelength.

Fig. 4
Fig. 4

Relative sensitivities of Lucent’s and the modified Lucent’s PCFs as functions of wavelength: Lucent’s PCF, Λ = 1.55 μm, d = 1.4 μm, d/Λ = 0.9; modified PCF, Λ = 1.33 μm and the varying hole diameter corresponding to d/Λ from 0.69 to 0.93.

Fig. 5
Fig. 5

Gas diffusion into the holes of the PCF of length l.

Fig. 6
Fig. 6

Normalized average concentration inside the hole’s column against the time for a range of fiber lengths l. Diffusion is assumed to be from both ends and with the wall effect considered.

Fig. 7
Fig. 7

Experimental setup: SMF, single-mode fiber; PD, photodetector.

Fig. 8
Fig. 8

Measured normalized minimum transmittance as a function of time: a, 25-cm-long PCF; b, 10-cm-long PCF.

Fig. 9
Fig. 9

a, PCF acetylene gas-sensing system: SMF, single-mode fiber; PD, photodetector; b, PCF with periodic openings; c, Quarter of the cross section of the Crystal Fiber’s PCF with opening.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Iλ=I0λexp-rαmλlC.
r=nr/nef,
f=holesExHy-EyHxdxdytotalExHy-EyHxdxdy,
Cx, t=C01-4/πj=1,3,51/j×sinjπx/lexp-jπ/l2Dt,
CAt= 1l0l Cx, tdx
CA=C01-8/π2j=1,3,51/j2exp-jπ/l2Dt.
DABC=DABDBBK/DAB+DABK,
DABKDAAKXB+DBBKXA,
DϕϕK=1/3dVϕ,
I=I0 exp-rαml1-8/π2j=1,3,5×1/j2exp-jπ/2l2Dt.
α=2nenec/ ne+nec E·Ecda E·Eda1/2 Ec·Ecda1/22,
Ps-2αL/7-αfL-rαmCmaxLPD,

Metrics