Abstract

A beam homogenizer for a hollow-fiber-based, UV laser delivery system is proposed. A rectangular glass waveguide with an inner aluminum coating that has a 1-mm square cross section is attached at the output end of the circular-core hollow fiber with a 1-mm inner diameter. The rectangular waveguide generates a number of higher-order modes and results in a uniform top-hat profile. The configuration of the waveguide is designed by a ray-tracing technique so that both the low transmission loss and the high uniformity in the output beam are obtained. The fabricated waveguide shows a low loss of 0.4 dB, and the intensity variation coefficient is 7%. The output beam from the rectangular waveguide is expanded by a lens to the size larger than 10-mm square. It is also shown that the profile does not change with the bending condition.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Matsuura, M. Miyagi, “Aluminum-coated hollow glass fibers for ArF-excimer laser light fabricated by metallorganic chemical-vapor deposition,” Appl. Opt. 38, 2458–2462 (1999).
    [CrossRef]
  2. Y. Matsuura, T. Yamamoto, M. Miyagi, “Delivery of F2-excimer laser light by aluminum hollow fibers,” Opt. Express 6, 257–261 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  3. F. M. Dickey, S. C. Holswade, Laser Beam Shaping (Marcel Dekker, New York, 2000).
    [CrossRef]
  4. C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
    [CrossRef]
  5. J. A. Hoffnagle, C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39, 5488–5499 (2000).
    [CrossRef]
  6. K. Jain, M. Zemel, M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” Proc. IEEE 90, 1681–1688 (2002).
    [CrossRef]
  7. Y. Matsuura, M. Miyagi, A. German, L. Nagli, A. Katzir, “Silver-halide fiber tip as a beam homogenizer for infrared hollow waveguides,” Opt. Lett. 22, 1308–1310 (1997).
    [CrossRef]
  8. M. M. Chen, J. B. Berkowitz-Mattuck, P. E. Glaser, “The use of kaleidoscope to obtain uniform flux over a large area in a solar or arc imaging furnace,” Appl. Opt. 2, 265–271 (1963).
    [CrossRef]
  9. R. E. Grojean, D. Feldman, J. F. Roach, “Production of flat top beam profiles for high energy lasers,” Rev. Sci. Instum. 51, 375–376 (1980).
    [CrossRef]
  10. J. M. Geary, “Channel integration for laser beam uniformity on target,” Opt. Eng. 27, 972–977 (1988).
    [CrossRef]
  11. R. J. Koshel, I. A. Walmsley, “Modeling of the gain distribution for diode pumping of a solid-state laser rod with nonimaging optics,” Appl. Opt. 32, 1517–1527 (1993).
    [CrossRef] [PubMed]
  12. J. S. Bendat, A. G. Piersol, Random Data, Analysis and Measurement Procedures, 2nd ed. (Wiley, New York, 1986).

2002 (1)

K. Jain, M. Zemel, M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” Proc. IEEE 90, 1681–1688 (2002).
[CrossRef]

2000 (2)

1999 (2)

Y. Matsuura, M. Miyagi, “Aluminum-coated hollow glass fibers for ArF-excimer laser light fabricated by metallorganic chemical-vapor deposition,” Appl. Opt. 38, 2458–2462 (1999).
[CrossRef]

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

1997 (1)

1993 (1)

1988 (1)

J. M. Geary, “Channel integration for laser beam uniformity on target,” Opt. Eng. 27, 972–977 (1988).
[CrossRef]

1980 (1)

R. E. Grojean, D. Feldman, J. F. Roach, “Production of flat top beam profiles for high energy lasers,” Rev. Sci. Instum. 51, 375–376 (1980).
[CrossRef]

1963 (1)

Bendat, J. S.

J. S. Bendat, A. G. Piersol, Random Data, Analysis and Measurement Procedures, 2nd ed. (Wiley, New York, 1986).

Berkowitz-Mattuck, J. B.

Chen, M. M.

Danson, C. N.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

Dickey, F. M.

F. M. Dickey, S. C. Holswade, Laser Beam Shaping (Marcel Dekker, New York, 2000).
[CrossRef]

Doyle, L. A.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

Feldman, D.

R. E. Grojean, D. Feldman, J. F. Roach, “Production of flat top beam profiles for high energy lasers,” Rev. Sci. Instum. 51, 375–376 (1980).
[CrossRef]

Geary, J. M.

J. M. Geary, “Channel integration for laser beam uniformity on target,” Opt. Eng. 27, 972–977 (1988).
[CrossRef]

German, A.

Glaser, P. E.

Grojean, R. E.

R. E. Grojean, D. Feldman, J. F. Roach, “Production of flat top beam profiles for high energy lasers,” Rev. Sci. Instum. 51, 375–376 (1980).
[CrossRef]

Hoffnagle, J. A.

Holswade, S. C.

F. M. Dickey, S. C. Holswade, Laser Beam Shaping (Marcel Dekker, New York, 2000).
[CrossRef]

Jain, K.

K. Jain, M. Zemel, M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” Proc. IEEE 90, 1681–1688 (2002).
[CrossRef]

Jefferson, C. M.

Katzir, A.

Klosner, M.

K. Jain, M. Zemel, M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” Proc. IEEE 90, 1681–1688 (2002).
[CrossRef]

Koshel, R. J.

Lewis, C. L. S.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

Martin, G. W.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

Matsuura, Y.

Miyagi, M.

Morrow, T.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

Nagli, L.

Pepler, D. A.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

Piersol, A. G.

J. S. Bendat, A. G. Piersol, Random Data, Analysis and Measurement Procedures, 2nd ed. (Wiley, New York, 1986).

Roach, J. F.

R. E. Grojean, D. Feldman, J. F. Roach, “Production of flat top beam profiles for high energy lasers,” Rev. Sci. Instum. 51, 375–376 (1980).
[CrossRef]

Ross, I. N.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

Walmsley, I. A.

Weaver, I.

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

Yamamoto, T.

Zemel, M.

K. Jain, M. Zemel, M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” Proc. IEEE 90, 1681–1688 (2002).
[CrossRef]

Appl. Opt. (4)

Opt. Eng. (1)

J. M. Geary, “Channel integration for laser beam uniformity on target,” Opt. Eng. 27, 972–977 (1988).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

K. Jain, M. Zemel, M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” Proc. IEEE 90, 1681–1688 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

C. L. S. Lewis, I. Weaver, L. A. Doyle, G. W. Martin, T. Morrow, D. A. Pepler, C. N. Danson, I. N. Ross, “Use of a random phase plate as a KrF laser beam homogenizer for thin film deposition applications,” Rev. Sci. Instrum. 70, 2116–2121 (1999).
[CrossRef]

Rev. Sci. Instum. (1)

R. E. Grojean, D. Feldman, J. F. Roach, “Production of flat top beam profiles for high energy lasers,” Rev. Sci. Instum. 51, 375–376 (1980).
[CrossRef]

Other (2)

F. M. Dickey, S. C. Holswade, Laser Beam Shaping (Marcel Dekker, New York, 2000).
[CrossRef]

J. S. Bendat, A. G. Piersol, Random Data, Analysis and Measurement Procedures, 2nd ed. (Wiley, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the beam delivery system with a beam homogenizer.

Fig. 2
Fig. 2

(a) Calculated losses versus the length of the waveguides with different inner side lengths w = 0.8, 1, and 2 mm. (b) Variation coefficients of the energy distribution emitted from waveguides with various sizes.

Fig. 3
Fig. 3

Cutting cross section of the fabricated waveguide.

Fig. 4
Fig. 4

Surface of the deposited aluminum film on the inside of rectangular hollow waveguide that is observed by atomic force microscopy.

Fig. 5
Fig. 5

(a) Two-dimensional and (b) three-dimensional power intensity distribution on the target radiated by homogenized laser beam.

Fig. 6
Fig. 6

Output beam profile from the bent hollow fiber (a) without and (b) with a rectangular waveguide.

Tables (1)

Tables Icon

Table 1 Measured Losses of Each Optical Component of the Laser Delivery Systema

Metrics