Abstract

This paper reports on an external-cavity-diode laser (ECDL) employing a fiber Bragg grating, which was newly designed for WDM applications without temperature control. An optical signal waveform generated by the novel ECDL when the longitudinal lasing mode hopped was observed directly for the first time. It is confirmed that optical signal degradation caused by mode hopping can be suppressed effectively.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. LT-1, 161–176 (1983).
    [CrossRef]
  2. L. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor CWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
    [CrossRef]
  3. K. O. Hill, G. Meltz, “Fiber-Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  4. N. Chinone, T. Kuroda, T. Ohtoshi, T. Takahashi, T. Kajimura, “Mode-hopping noise in index-guided semiconductor lasers and its reduction by saturable absorbers,” IEEE J. Quantum Electron. QE-21, 1264–1269 (1985).
    [CrossRef]
  5. T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
    [CrossRef]
  6. M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys. 66, 81–89 (1989).
    [CrossRef]
  7. J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, R. Somchai, “Lasing characteristics of 1.5-mm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27, 1736–1745 (1991).
    [CrossRef]
  8. G. P. Agrawal, C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24, 134–142 (1988).
    [CrossRef]

2002 (2)

L. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor CWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

1997 (1)

K. O. Hill, G. Meltz, “Fiber-Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

1991 (1)

J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, R. Somchai, “Lasing characteristics of 1.5-mm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27, 1736–1745 (1991).
[CrossRef]

1989 (1)

M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys. 66, 81–89 (1989).
[CrossRef]

1988 (1)

G. P. Agrawal, C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24, 134–142 (1988).
[CrossRef]

1985 (1)

N. Chinone, T. Kuroda, T. Ohtoshi, T. Takahashi, T. Kajimura, “Mode-hopping noise in index-guided semiconductor lasers and its reduction by saturable absorbers,” IEEE J. Quantum Electron. QE-21, 1264–1269 (1985).
[CrossRef]

1983 (1)

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. LT-1, 161–176 (1983).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24, 134–142 (1988).
[CrossRef]

Arai, S.

J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, R. Somchai, “Lasing characteristics of 1.5-mm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27, 1736–1745 (1991).
[CrossRef]

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. LT-1, 161–176 (1983).
[CrossRef]

Arima, I.

J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, R. Somchai, “Lasing characteristics of 1.5-mm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27, 1736–1745 (1991).
[CrossRef]

Buckman, L.

L. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor CWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

Chinone, N.

N. Chinone, T. Kuroda, T. Ohtoshi, T. Takahashi, T. Kajimura, “Mode-hopping noise in index-guided semiconductor lasers and its reduction by saturable absorbers,” IEEE J. Quantum Electron. QE-21, 1264–1269 (1985).
[CrossRef]

Gong, W.

L. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor CWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

Henry, C. H.

G. P. Agrawal, C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24, 134–142 (1988).
[CrossRef]

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber-Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Horiguchi, T.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Kajimura, T.

N. Chinone, T. Kuroda, T. Ohtoshi, T. Takahashi, T. Kajimura, “Mode-hopping noise in index-guided semiconductor lasers and its reduction by saturable absorbers,” IEEE J. Quantum Electron. QE-21, 1264–1269 (1985).
[CrossRef]

Kishino, K.

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. LT-1, 161–176 (1983).
[CrossRef]

Komori, K.

J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, R. Somchai, “Lasing characteristics of 1.5-mm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27, 1736–1745 (1991).
[CrossRef]

Kuroda, T.

N. Chinone, T. Kuroda, T. Ohtoshi, T. Takahashi, T. Kajimura, “Mode-hopping noise in index-guided semiconductor lasers and its reduction by saturable absorbers,” IEEE J. Quantum Electron. QE-21, 1264–1269 (1985).
[CrossRef]

Lemoff, B. E.

L. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor CWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

Meltz, G.

K. O. Hill, G. Meltz, “Fiber-Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Ohtoshi, T.

N. Chinone, T. Kuroda, T. Ohtoshi, T. Takahashi, T. Kajimura, “Mode-hopping noise in index-guided semiconductor lasers and its reduction by saturable absorbers,” IEEE J. Quantum Electron. QE-21, 1264–1269 (1985).
[CrossRef]

Sato, T.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Schmit, A. J.

L. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor CWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

Shim, J. I.

J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, R. Somchai, “Lasing characteristics of 1.5-mm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27, 1736–1745 (1991).
[CrossRef]

Somchai, R.

J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, R. Somchai, “Lasing characteristics of 1.5-mm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27, 1736–1745 (1991).
[CrossRef]

Suematsu, Y.

J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, R. Somchai, “Lasing characteristics of 1.5-mm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27, 1736–1745 (1991).
[CrossRef]

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. LT-1, 161–176 (1983).
[CrossRef]

Takahashi, T.

N. Chinone, T. Kuroda, T. Ohtoshi, T. Takahashi, T. Kajimura, “Mode-hopping noise in index-guided semiconductor lasers and its reduction by saturable absorbers,” IEEE J. Quantum Electron. QE-21, 1264–1269 (1985).
[CrossRef]

Takesue, H.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Tella, R. P.

L. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor CWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

Tsuji, K.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Yamada, M.

M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys. 66, 81–89 (1989).
[CrossRef]

Yamamoto, F.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

N. Chinone, T. Kuroda, T. Ohtoshi, T. Takahashi, T. Kajimura, “Mode-hopping noise in index-guided semiconductor lasers and its reduction by saturable absorbers,” IEEE J. Quantum Electron. QE-21, 1264–1269 (1985).
[CrossRef]

J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, R. Somchai, “Lasing characteristics of 1.5-mm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27, 1736–1745 (1991).
[CrossRef]

G. P. Agrawal, C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24, 134–142 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

L. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor CWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

J. Appl. Phys. (1)

M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys. 66, 81–89 (1989).
[CrossRef]

J. Lightwave Technol. (2)

K. O. Hill, G. Meltz, “Fiber-Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. LT-1, 161–176 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of (a) single-mode operation, and (b) repetitious mode-hopping mechanism of a conventional ECDL.

Fig. 2
Fig. 2

Schematic diagram of suppression of repetitious mode hopping, (a) lasing mode preservation, and (b) isolated mode-hop mechanism of a proposed ECDL.

Fig. 3
Fig. 3

Schematic diagram of ECDL employing fiber Bragg grating. HR, high reflection; SOA, semiconductor optical amplifier; AR, antireflection.

Fig. 4
Fig. 4

Optical spectrum of proposed UC-ECDL with cw operation and with 2.48832-Gb/s direct modulation.

Fig. 5
Fig. 5

Experimental setup used for observing the optical signal waveform and the bit error rate during IMH. BPF, band-pass filter; PPG, pulse pattern generator; DC, direct current; PD, photodiode; BW, bandwidth.

Fig. 6
Fig. 6

Optical spectrum before and after IMH.

Fig. 7
Fig. 7

Observed (a) whole optical signal from UC-ECDL; (b) the beat signal between LO-1 and the optical signal from one longitudinal mode, which predominates before the IMH; and (c) the beat signal between LO-2 and the optical signal from another longitudinal mode, which predominates after the IMH.

Fig. 8
Fig. 8

Measured L-I characteristics of proposed UC-ECDL under the condition that the IMH occurs, and calculated L-I characteristics, when the reflection ratio is (a) 0.18 and (b) 0.20.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Gasym:qωp, ωq=-σγ+αeffωq-ωpγ2+ωq-ωp2 Sp,
σ=3ξg2τsIth-Ig4eV2,
γ=I-IgIth-Igτs,

Metrics