Abstract

Two new extension modules that give the water-leaving radiance from the ocean and the snow bidirectional reflectance distribution function were implemented in the latest radiative transfer code. In addition, to simulate the near-global distributions of satellite-measured radiances by using the improved radiative transfer code, we tested and applied the look-up table method together with the process-separation technique of the radiative transfer calculation. The computing time was reduced from 1 year to 20 s to simulate one channel, one scene of the Global Imager image by use of an Alpha 21164A-2 (600-MHz) machine. The error analyses showed that the radiances were simulated with less than 1% error for the nonabsorbing visible channels and ∼2% error for absorbing channels by use of this method.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Rossow, “Measuring cloud properties from space: a review,” J. Clim. 2, 201–213 (1989).
    [CrossRef]
  2. Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Clim. 7, 465–497 (1994).
    [CrossRef]
  3. A. Higurashi, T. Nakajima, “Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR,” J. Atmos. Sci. 56, 924–941 (1999).
    [CrossRef]
  4. T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
    [CrossRef]
  5. T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
    [CrossRef]
  6. T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
    [CrossRef]
  7. T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectroc. Radiat. Transfer 29, 521–537 (1983).
    [CrossRef]
  8. Y. Kaufman, T. Nakajima, “Effect of Amazon smoke on cloud microphysics and albedo—analysis from satellite imagery,” J. Appl. Meteorol. 32, 729–774 (1993).
    [CrossRef]
  9. T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
    [CrossRef]
  10. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef] [PubMed]
  11. F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  12. A. Tanaka, T. Oishi, M. Kishino, D. Roland, “Application of the neural network to OCTS data,” presented at the Fourteenth Ocean Optics Conference, Kailua Kona, Hawaii, 10–13 November 1998.
  13. R. Doerffer, “Imaging spectroscopy for detection of chlorophyll and suspended matter,” Imaging Spectroscopy and Prospective Applications, F. Toselli, J. Bodechtel, eds. (ECSC-EEC-EAEC, Brussels-Luxembourg, 1992) pp. 215–257.
  14. J. Joseph, “Untersuchungen über ober- und unterlichtmessungen im meere und über ihren zusammenhang mit durchsichtigkeitsmessungen,” Dtsh. Hydrogr. Z. 3, 324–335 (1950).
    [CrossRef]
  15. T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
    [CrossRef]
  16. J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. Part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
    [CrossRef]
  17. T. Aoki, T. Aoki, M. Fukabori, A. Uchiyama, “Numerical simulation of atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595–614 (1999).
  18. P. A. Agbu, M. E. James, The NOAA/NASA Pathfinder AVHRR Land Data Set User’s Manual (Goddard Distributed Active Center, NASA, Goddard Space Flight Center, Greenbelt, Md., 1994).
  19. S. W. Running, T. R. Loveland, L. L. Pierce, “A vegetation classification logic based on remote sensing for use in global biogeochemical models,” Ambio 23, 77–81 (1994).
  20. T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000).
    [CrossRef]
  21. A. Numaguti, “Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: significance of the distribution of evaporation,” J. Atmos. Sci. 50, 1874–1887 (1993).
    [CrossRef]
  22. A. Nolin, R. L. Armstrong, J. Maslanik, “Near real-time SSM/I EASE-grid daily global ice concentration and snow extent,” National Snow and Ice Data Center, Boulder, Colo., data on 11 January 2000, digital media.
  23. W. J. Wiscombe, S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712–2733 (1980).
    [CrossRef]
  24. T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).
  25. K. Kawamoto, T. Nakajima, T. Y. Nakajima, “A global determination of cloud microphysics with AVHRR remote sensing,” J. Clim. 14, 2054–2068 (2001).
    [CrossRef]

2001

K. Kawamoto, T. Nakajima, T. Y. Nakajima, “A global determination of cloud microphysics with AVHRR remote sensing,” J. Clim. 14, 2054–2068 (2001).
[CrossRef]

2000

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000).
[CrossRef]

1999

T. Aoki, T. Aoki, M. Fukabori, A. Uchiyama, “Numerical simulation of atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595–614 (1999).

A. Higurashi, T. Nakajima, “Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR,” J. Atmos. Sci. 56, 924–941 (1999).
[CrossRef]

1998

T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[CrossRef]

1995

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

1994

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Clim. 7, 465–497 (1994).
[CrossRef]

S. W. Running, T. R. Loveland, L. L. Pierce, “A vegetation classification logic based on remote sensing for use in global biogeochemical models,” Ambio 23, 77–81 (1994).

1993

Y. Kaufman, T. Nakajima, “Effect of Amazon smoke on cloud microphysics and albedo—analysis from satellite imagery,” J. Appl. Meteorol. 32, 729–774 (1993).
[CrossRef]

A. Numaguti, “Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: significance of the distribution of evaporation,” J. Atmos. Sci. 50, 1874–1887 (1993).
[CrossRef]

1989

W. B. Rossow, “Measuring cloud properties from space: a review,” J. Clim. 2, 201–213 (1989).
[CrossRef]

1988

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef] [PubMed]

1986

T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

1983

T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectroc. Radiat. Transfer 29, 521–537 (1983).
[CrossRef]

1980

W. J. Wiscombe, S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712–2733 (1980).
[CrossRef]

1971

J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. Part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[CrossRef]

1950

J. Joseph, “Untersuchungen über ober- und unterlichtmessungen im meere und über ihren zusammenhang mit durchsichtigkeitsmessungen,” Dtsh. Hydrogr. Z. 3, 324–335 (1950).
[CrossRef]

Agbu, P. A.

P. A. Agbu, M. E. James, The NOAA/NASA Pathfinder AVHRR Land Data Set User’s Manual (Goddard Distributed Active Center, NASA, Goddard Space Flight Center, Greenbelt, Md., 1994).

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Aoki, T.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Uchiyama, “Numerical simulation of atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595–614 (1999).

T. Aoki, T. Aoki, M. Fukabori, A. Uchiyama, “Numerical simulation of atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595–614 (1999).

T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).

T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).

Arbeu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Armstrong, R. L.

A. Nolin, R. L. Armstrong, J. Maslanik, “Near real-time SSM/I EASE-grid daily global ice concentration and snow extent,” National Snow and Ice Data Center, Boulder, Colo., data on 11 January 2000, digital media.

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Clough, S. A.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Doerffer, R.

R. Doerffer, “Imaging spectroscopy for detection of chlorophyll and suspended matter,” Imaging Spectroscopy and Prospective Applications, F. Toselli, J. Bodechtel, eds. (ECSC-EEC-EAEC, Brussels-Luxembourg, 1992) pp. 215–257.

Fukabori, M.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Uchiyama, “Numerical simulation of atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595–614 (1999).

T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).

Fukushima, H.

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Hachikubo, A.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

Han, Q.

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Clim. 7, 465–497 (1994).
[CrossRef]

Hansen, J. E.

J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. Part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[CrossRef]

Higurashi, A.

T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000).
[CrossRef]

A. Higurashi, T. Nakajima, “Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR,” J. Atmos. Sci. 56, 924–941 (1999).
[CrossRef]

James, M. E.

P. A. Agbu, M. E. James, The NOAA/NASA Pathfinder AVHRR Land Data Set User’s Manual (Goddard Distributed Active Center, NASA, Goddard Space Flight Center, Greenbelt, Md., 1994).

Jayaweera, K.

Joseph, J.

J. Joseph, “Untersuchungen über ober- und unterlichtmessungen im meere und über ihren zusammenhang mit durchsichtigkeitsmessungen,” Dtsh. Hydrogr. Z. 3, 324–335 (1950).
[CrossRef]

Kaufman, Y.

Y. Kaufman, T. Nakajima, “Effect of Amazon smoke on cloud microphysics and albedo—analysis from satellite imagery,” J. Appl. Meteorol. 32, 729–774 (1993).
[CrossRef]

Kawamoto, K.

K. Kawamoto, T. Nakajima, T. Y. Nakajima, “A global determination of cloud microphysics with AVHRR remote sensing,” J. Clim. 14, 2054–2068 (2001).
[CrossRef]

Kishino, M.

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[CrossRef]

A. Tanaka, T. Oishi, M. Kishino, D. Roland, “Application of the neural network to OCTS data,” presented at the Fourteenth Ocean Optics Conference, Kailua Kona, Hawaii, 10–13 November 1998.

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Kuji, M.

Lacis, A. A.

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Clim. 7, 465–497 (1994).
[CrossRef]

Loveland, T. R.

S. W. Running, T. R. Loveland, L. L. Pierce, “A vegetation classification logic based on remote sensing for use in global biogeochemical models,” Ambio 23, 77–81 (1994).

Maruyama, Y.

T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000).
[CrossRef]

Maslanik, J.

A. Nolin, R. L. Armstrong, J. Maslanik, “Near real-time SSM/I EASE-grid daily global ice concentration and snow extent,” National Snow and Ice Data Center, Boulder, Colo., data on 11 January 2000, digital media.

Nakajima, M.

Nakajima, T.

K. Kawamoto, T. Nakajima, T. Y. Nakajima, “A global determination of cloud microphysics with AVHRR remote sensing,” J. Clim. 14, 2054–2068 (2001).
[CrossRef]

T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000).
[CrossRef]

A. Higurashi, T. Nakajima, “Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR,” J. Atmos. Sci. 56, 924–941 (1999).
[CrossRef]

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[CrossRef]

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

Y. Kaufman, T. Nakajima, “Effect of Amazon smoke on cloud microphysics and albedo—analysis from satellite imagery,” J. Appl. Meteorol. 32, 729–774 (1993).
[CrossRef]

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectroc. Radiat. Transfer 29, 521–537 (1983).
[CrossRef]

Nakajima, T. Y.

K. Kawamoto, T. Nakajima, T. Y. Nakajima, “A global determination of cloud microphysics with AVHRR remote sensing,” J. Clim. 14, 2054–2068 (2001).
[CrossRef]

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[CrossRef]

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

Nishio, F.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).

Nolin, A.

A. Nolin, R. L. Armstrong, J. Maslanik, “Near real-time SSM/I EASE-grid daily global ice concentration and snow extent,” National Snow and Ice Data Center, Boulder, Colo., data on 11 January 2000, digital media.

Numaguti, A.

T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000).
[CrossRef]

A. Numaguti, “Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: significance of the distribution of evaporation,” J. Atmos. Sci. 50, 1874–1887 (1993).
[CrossRef]

Oishi, T.

T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).

A. Tanaka, T. Oishi, M. Kishino, D. Roland, “Application of the neural network to OCTS data,” presented at the Fourteenth Ocean Optics Conference, Kailua Kona, Hawaii, 10–13 November 1998.

Okamoto, H.

T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000).
[CrossRef]

Pierce, L. L.

S. W. Running, T. R. Loveland, L. L. Pierce, “A vegetation classification logic based on remote sensing for use in global biogeochemical models,” Ambio 23, 77–81 (1994).

Roland, D.

A. Tanaka, T. Oishi, M. Kishino, D. Roland, “Application of the neural network to OCTS data,” presented at the Fourteenth Ocean Optics Conference, Kailua Kona, Hawaii, 10–13 November 1998.

Rossow, W. B.

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Clim. 7, 465–497 (1994).
[CrossRef]

W. B. Rossow, “Measuring cloud properties from space: a review,” J. Clim. 2, 201–213 (1989).
[CrossRef]

Running, S. W.

S. W. Running, T. R. Loveland, L. L. Pierce, “A vegetation classification logic based on remote sensing for use in global biogeochemical models,” Ambio 23, 77–81 (1994).

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Stamnes, K.

Tachibana, Y.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).

Takemura, T.

T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000).
[CrossRef]

Tanaka, A.

A. Tanaka, T. Oishi, M. Kishino, D. Roland, “Application of the neural network to OCTS data,” presented at the Fourteenth Ocean Optics Conference, Kailua Kona, Hawaii, 10–13 November 1998.

Tanaka, M.

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectroc. Radiat. Transfer 29, 521–537 (1983).
[CrossRef]

Tsay, S.-C.

Uchiyama, A.

T. Aoki, T. Aoki, M. Fukabori, A. Uchiyama, “Numerical simulation of atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595–614 (1999).

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[CrossRef]

Warren, S. G.

W. J. Wiscombe, S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712–2733 (1980).
[CrossRef]

Wiscombe, W.

Wiscombe, W. J.

W. J. Wiscombe, S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712–2733 (1980).
[CrossRef]

Zaizen, Y.

T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).

Ambio

S. W. Running, T. R. Loveland, L. L. Pierce, “A vegetation classification logic based on remote sensing for use in global biogeochemical models,” Ambio 23, 77–81 (1994).

Appl. Opt.

Dtsh. Hydrogr. Z.

J. Joseph, “Untersuchungen über ober- und unterlichtmessungen im meere und über ihren zusammenhang mit durchsichtigkeitsmessungen,” Dtsh. Hydrogr. Z. 3, 324–335 (1950).
[CrossRef]

J. Appl. Meteorol.

Y. Kaufman, T. Nakajima, “Effect of Amazon smoke on cloud microphysics and albedo—analysis from satellite imagery,” J. Appl. Meteorol. 32, 729–774 (1993).
[CrossRef]

J. Atmos. Sci.

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

A. Higurashi, T. Nakajima, “Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR,” J. Atmos. Sci. 56, 924–941 (1999).
[CrossRef]

J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. Part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[CrossRef]

A. Numaguti, “Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: significance of the distribution of evaporation,” J. Atmos. Sci. 50, 1874–1887 (1993).
[CrossRef]

W. J. Wiscombe, S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712–2733 (1980).
[CrossRef]

J. Clim.

K. Kawamoto, T. Nakajima, T. Y. Nakajima, “A global determination of cloud microphysics with AVHRR remote sensing,” J. Clim. 14, 2054–2068 (2001).
[CrossRef]

W. B. Rossow, “Measuring cloud properties from space: a review,” J. Clim. 2, 201–213 (1989).
[CrossRef]

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Clim. 7, 465–497 (1994).
[CrossRef]

J. Geophys. Res.

T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

J. Meteorol. Soc. Jpn.

T. Aoki, T. Aoki, M. Fukabori, A. Uchiyama, “Numerical simulation of atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595–614 (1999).

J. Quant. Spectroc. Radiat. Transfer

T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectroc. Radiat. Transfer 29, 521–537 (1983).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

Polar Meteorol. Glaciol.

T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).

Other

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

A. Tanaka, T. Oishi, M. Kishino, D. Roland, “Application of the neural network to OCTS data,” presented at the Fourteenth Ocean Optics Conference, Kailua Kona, Hawaii, 10–13 November 1998.

R. Doerffer, “Imaging spectroscopy for detection of chlorophyll and suspended matter,” Imaging Spectroscopy and Prospective Applications, F. Toselli, J. Bodechtel, eds. (ECSC-EEC-EAEC, Brussels-Luxembourg, 1992) pp. 215–257.

P. A. Agbu, M. E. James, The NOAA/NASA Pathfinder AVHRR Land Data Set User’s Manual (Goddard Distributed Active Center, NASA, Goddard Space Flight Center, Greenbelt, Md., 1994).

A. Nolin, R. L. Armstrong, J. Maslanik, “Near real-time SSM/I EASE-grid daily global ice concentration and snow extent,” National Snow and Ice Data Center, Boulder, Colo., data on 11 January 2000, digital media.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of the improved RSTAR5b structure. Two extension modules (dashed boxes) have been installed since Nakajima et al.4 RSTAR5b is a complex of software tools for radiative transfer and optical modeling of the atmosphere.

Fig. 2
Fig. 2

Difference in expected measured radiance at the TOA, with and without ocean color contribution calculated by the improved RSTAR5b, at 15 GLI ocean color channels in the visible (see Table 1 for detailed channel positions).

Fig. 3
Fig. 3

Expected measured radiance with a function of snow grain size (micrometers) (left panels) and snow impurity (ppmw) (right panels) corresponding GLI channels 13 (0.678 μm, top panels), 24 (1.05 μm, middle panels), and 28 (1.64 μm, bottom panels). The solar zenith angle, satellite zenith angle, and relative azimuth angle were 70, 30, and 50 deg.

Fig. 4
Fig. 4

Compression ratio of LUT size with and without this technique for each GLI channel. Specifications for each channel are summarized in Table 1.

Fig. 5
Fig. 5

Expected measured radiance (left panels) and the difference (%) (right panels) with and without the process-separation technique, with fixed ground albedo of 0.6, as a function of aerosol optical thickness at 500 nm with Ångström exponents of 9.11 × 10-1, 3.99 × 10-1, 1.14 × 10-1, and -2.47 × 10-3 for GLI channels 2 (0.400 μm), 13 (0.678 μm), and 19 (0.865 μm). The scan geometries were θ0 = 60 deg, θ = 40 deg, and ϕ = 50 deg. O_ and A_ in the left panels’ legends denote without and with the process-separation technique.

Fig. 6
Fig. 6

Same as Fig. 5 but for GLI channels 13, 19, and 30, with clouds as a function of cloud optical thickness with effective particle radii of 2, 9, and 25 μm.

Fig. 7
Fig. 7

Red (0.678 μm), green (0.545 μm), and blue (0.400 μm) composite near-global image obtained by the virtual remote sensing of the GLI, corresponding to 15 Sun-synchronous orbits on 29 January 2001.

Fig. 8
Fig. 8

Simulated radiance of typical wavelengths in (a) visible 0.865 μm, (b) short-wave infrared 3.715 μm, and (c) thermal infrared 10.8 μm channels of the GLI.

Tables (4)

Tables Icon

Table 1 Summary of Final Specifications of the GLI Channels

Tables Icon

Table 2 Explanations of Variables and Parameters in Eqs. (1)–(6)

Tables Icon

Table 3 Summary of the Process-Separation Methods for Each Condition and GLI Channels

Tables Icon

Table 4 Summary of the Geophysical Parameters and Their Sources

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Lobsτc, re, z; μ, μ0, ϕ=LTOA_wosτc, re, z; μ, μ0, ϕ+tτc, re, z; μAg1-r¯τc, re, zAg×tτc, re, z; μ0μ0F0π,
Lobsτa, α; μ, μ0, ϕ=LTOA_wosτa, α; μ, μ0, ϕ+tτa, α; μAg1-r¯τa, αAg×tτa, α; μ0μ0F0π,
Lobsτa, α; μ, μ0, ϕ=LTOA_with_oceanτa, α; μ, μ0, ϕ+tτa, α; μLwμ0tτa, α; μ0,
Lobsτc, re, z; μ, μ0, ϕ=LTOA_wosτc, re, z; μ, μ0, ϕ+tτc, re, z; μAg1-r¯τc, re, zAg×tτc, re, z; μ0μ0F0π +tτc, re, z; μ1-Ag1-r¯τc, re, zAg BTg,
Lobsτa, α; μ, μ0, ϕ=LTOA_wosτa, α; μ, μ0, ϕ+tτa, α; μAg1-r¯τa, αAg×tτa, α; μ0μ0F0π+tτa, α; μ1-Ag1-r¯τa, αAg BTg,
Lobsτc, re, z; μ,=LTOA_wosτc, re, z; μ+tτc, re, z; μ1-Ag1-r¯τc, re, zAg BTg.
tτc, re; μ0=1π02π01 Tτc, re; μ, μ0, ϕμdμdϕ+exp-τc/μ0,
rτc, re; μ=1π02π01 Rτc, re; μ, μ, ϕμdμdϕ,
r¯τc, re=2 01 rτc, re; μμdμ,
t=n=1N φnk=1Mwn,ktn,kn=1N φn,
dVd lnr=i=12ci exp-12lnr/rmilnσi2,
rs=expln2000-ln25273.15-253.15Tg-253.15+25.0,
ξ=1-0.010.005-1.63×10-4τsulfate-0.005+1.0,

Metrics