Abstract

The strength of optical turbulence, C n 2(z), 2–3 m above ground level, was measured as a function of distance along a 1.23-km path by the simultaneous capture of the scintillation from two infrared laser sources. The data collected differs in a number of important aspects from the normal vertical scintillation detection and ranging (SCIDAR) data in astronomy. The SCIDAR inversion method for the horizontal path problem is outlined and demonstrated on experimental data collected from three field trials.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Vernin, F. Roddier, “Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere,” J. Opt. Soc. Am. 63, 270–273 (1973).
    [CrossRef]
  2. A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994).
    [CrossRef]
  3. V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. A. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised scidar technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
    [CrossRef]
  4. R. Avila, J. Vernin, L. J. Sanchez, “Atmospheric turbulence and wind profiles monitoring with generalized scidar,” Astron. Astrophys. 369, 364–372 (2001).
    [CrossRef]
  5. H. Beaumont, C. Aime, E. Aristidi, H. Lanteri, “Image quality and seeing measurements for long horizontal overwater propagation,” Pure Appl. Opt. 6, 15–30 (1997).
    [CrossRef]
  6. A. Biswas, S. Lee, “Ground-to-ground optical communications demonstration,” Telecommunications and Mission Operations Progress Report 42-141 (NASA-Jet Propulsion Laboratory-California Institute of Technology, Pasadena, Calif., 2000).
  7. V. Thiermann, A. Karipot, I. Dirmhirn, P. Poschl, C. Czekits, “Optical turbulence over paved surfaces,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 197–203 (1995).
    [CrossRef]
  8. R. L. Phillips, L. C. Andrews, “Measured statistics of laser-light scattering in atmospheric turbulence,” J. Opt. Soc. Am. 71, 1440–1445 (1981).
    [CrossRef]
  9. R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., in The Infrared and Electro-Optical Systems Handbook (Infrared Information Analysis Center, Ann Arbor, Mich., and SPIE, Bellingham, Wash., 1993), pp. 157–232.
  10. R. A. Johnston, T. J. Connolly, R. G. Lane, “An improved method for deconvolving a positive image,” Opt. Commun. 181, 267–278 (2000).
    [CrossRef]
  11. F. Roddier, “Effects of atmospheric turbulence in optical astronomy,” in Progress in OpticsE. Wolf, ed. (Elsevier, New York, 1981), Vol. 19, pp. 281–376.
    [CrossRef]
  12. R. A. Johnston, R. G. Lane, “Estimating turbulence profiles in the atmosphere,” in Image Reconstruction from Incomplete Data, M. A. Fiddy, R. P. Millane, eds., Proc. SPIE4123, 35–46 (2000).
    [CrossRef]

2001

R. Avila, J. Vernin, L. J. Sanchez, “Atmospheric turbulence and wind profiles monitoring with generalized scidar,” Astron. Astrophys. 369, 364–372 (2001).
[CrossRef]

2000

R. A. Johnston, T. J. Connolly, R. G. Lane, “An improved method for deconvolving a positive image,” Opt. Commun. 181, 267–278 (2000).
[CrossRef]

1998

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. A. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised scidar technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

1997

H. Beaumont, C. Aime, E. Aristidi, H. Lanteri, “Image quality and seeing measurements for long horizontal overwater propagation,” Pure Appl. Opt. 6, 15–30 (1997).
[CrossRef]

1981

1973

Adcock, M. A.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. A. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised scidar technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Aime, C.

H. Beaumont, C. Aime, E. Aristidi, H. Lanteri, “Image quality and seeing measurements for long horizontal overwater propagation,” Pure Appl. Opt. 6, 15–30 (1997).
[CrossRef]

Andrews, L. C.

Aristidi, E.

H. Beaumont, C. Aime, E. Aristidi, H. Lanteri, “Image quality and seeing measurements for long horizontal overwater propagation,” Pure Appl. Opt. 6, 15–30 (1997).
[CrossRef]

Avila, R.

R. Avila, J. Vernin, L. J. Sanchez, “Atmospheric turbulence and wind profiles monitoring with generalized scidar,” Astron. Astrophys. 369, 364–372 (2001).
[CrossRef]

Beaumont, H.

H. Beaumont, C. Aime, E. Aristidi, H. Lanteri, “Image quality and seeing measurements for long horizontal overwater propagation,” Pure Appl. Opt. 6, 15–30 (1997).
[CrossRef]

Beland, R. R.

R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., in The Infrared and Electro-Optical Systems Handbook (Infrared Information Analysis Center, Ann Arbor, Mich., and SPIE, Bellingham, Wash., 1993), pp. 157–232.

Biswas, A.

A. Biswas, S. Lee, “Ground-to-ground optical communications demonstration,” Telecommunications and Mission Operations Progress Report 42-141 (NASA-Jet Propulsion Laboratory-California Institute of Technology, Pasadena, Calif., 2000).

Connolly, T. J.

R. A. Johnston, T. J. Connolly, R. G. Lane, “An improved method for deconvolving a positive image,” Opt. Commun. 181, 267–278 (2000).
[CrossRef]

Czekits, C.

V. Thiermann, A. Karipot, I. Dirmhirn, P. Poschl, C. Czekits, “Optical turbulence over paved surfaces,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 197–203 (1995).
[CrossRef]

Dainty, J. C.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. A. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised scidar technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Dirmhirn, I.

V. Thiermann, A. Karipot, I. Dirmhirn, P. Poschl, C. Czekits, “Optical turbulence over paved surfaces,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 197–203 (1995).
[CrossRef]

Fuchs, A.

A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994).
[CrossRef]

Johnston, R. A.

R. A. Johnston, T. J. Connolly, R. G. Lane, “An improved method for deconvolving a positive image,” Opt. Commun. 181, 267–278 (2000).
[CrossRef]

R. A. Johnston, R. G. Lane, “Estimating turbulence profiles in the atmosphere,” in Image Reconstruction from Incomplete Data, M. A. Fiddy, R. P. Millane, eds., Proc. SPIE4123, 35–46 (2000).
[CrossRef]

Karipot, A.

V. Thiermann, A. Karipot, I. Dirmhirn, P. Poschl, C. Czekits, “Optical turbulence over paved surfaces,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 197–203 (1995).
[CrossRef]

Kluckers, V. A.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. A. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised scidar technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Lane, R. G.

R. A. Johnston, T. J. Connolly, R. G. Lane, “An improved method for deconvolving a positive image,” Opt. Commun. 181, 267–278 (2000).
[CrossRef]

R. A. Johnston, R. G. Lane, “Estimating turbulence profiles in the atmosphere,” in Image Reconstruction from Incomplete Data, M. A. Fiddy, R. P. Millane, eds., Proc. SPIE4123, 35–46 (2000).
[CrossRef]

Lanteri, H.

H. Beaumont, C. Aime, E. Aristidi, H. Lanteri, “Image quality and seeing measurements for long horizontal overwater propagation,” Pure Appl. Opt. 6, 15–30 (1997).
[CrossRef]

Lee, S.

A. Biswas, S. Lee, “Ground-to-ground optical communications demonstration,” Telecommunications and Mission Operations Progress Report 42-141 (NASA-Jet Propulsion Laboratory-California Institute of Technology, Pasadena, Calif., 2000).

Munro, I.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. A. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised scidar technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Nicholls, T. W.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. A. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised scidar technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Phillips, R. L.

Poschl, P.

V. Thiermann, A. Karipot, I. Dirmhirn, P. Poschl, C. Czekits, “Optical turbulence over paved surfaces,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 197–203 (1995).
[CrossRef]

Roddier, F.

Sanchez, L. J.

R. Avila, J. Vernin, L. J. Sanchez, “Atmospheric turbulence and wind profiles monitoring with generalized scidar,” Astron. Astrophys. 369, 364–372 (2001).
[CrossRef]

Tallon, M.

A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994).
[CrossRef]

Thiermann, V.

V. Thiermann, A. Karipot, I. Dirmhirn, P. Poschl, C. Czekits, “Optical turbulence over paved surfaces,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 197–203 (1995).
[CrossRef]

Vernin, J.

R. Avila, J. Vernin, L. J. Sanchez, “Atmospheric turbulence and wind profiles monitoring with generalized scidar,” Astron. Astrophys. 369, 364–372 (2001).
[CrossRef]

J. Vernin, F. Roddier, “Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere,” J. Opt. Soc. Am. 63, 270–273 (1973).
[CrossRef]

A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994).
[CrossRef]

Wooder, N. J.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. A. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised scidar technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Astron. Astrophys.

R. Avila, J. Vernin, L. J. Sanchez, “Atmospheric turbulence and wind profiles monitoring with generalized scidar,” Astron. Astrophys. 369, 364–372 (2001).
[CrossRef]

Astron. Astrophys. Suppl. Ser.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. A. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised scidar technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

R. A. Johnston, T. J. Connolly, R. G. Lane, “An improved method for deconvolving a positive image,” Opt. Commun. 181, 267–278 (2000).
[CrossRef]

Pure Appl. Opt.

H. Beaumont, C. Aime, E. Aristidi, H. Lanteri, “Image quality and seeing measurements for long horizontal overwater propagation,” Pure Appl. Opt. 6, 15–30 (1997).
[CrossRef]

Other

A. Biswas, S. Lee, “Ground-to-ground optical communications demonstration,” Telecommunications and Mission Operations Progress Report 42-141 (NASA-Jet Propulsion Laboratory-California Institute of Technology, Pasadena, Calif., 2000).

V. Thiermann, A. Karipot, I. Dirmhirn, P. Poschl, C. Czekits, “Optical turbulence over paved surfaces,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 197–203 (1995).
[CrossRef]

R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., in The Infrared and Electro-Optical Systems Handbook (Infrared Information Analysis Center, Ann Arbor, Mich., and SPIE, Bellingham, Wash., 1993), pp. 157–232.

F. Roddier, “Effects of atmospheric turbulence in optical astronomy,” in Progress in OpticsE. Wolf, ed. (Elsevier, New York, 1981), Vol. 19, pp. 281–376.
[CrossRef]

R. A. Johnston, R. G. Lane, “Estimating turbulence profiles in the atmosphere,” in Image Reconstruction from Incomplete Data, M. A. Fiddy, R. P. Millane, eds., Proc. SPIE4123, 35–46 (2000).
[CrossRef]

A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry of spherical wave propagation with two point sources.

Fig. 2
Fig. 2

Sample covariance slice illustrating the nonlinear altitude sampling.

Fig. 3
Fig. 3

Schematic diagram of the horizontal SCIDAR optical system. For operation in pupil-plane SCIDAR mode, the field lens L2 is selected so as to produce an image of the desired size at the CCD, fixing l 2′ for operation in both generalized and pupil-plane SCIDAR modes. Operation in generalized SCIDAR mode simply requires a change of field lens. The location of the virtual measurement plane is then given by use of the thin-lens equation.

Fig. 4
Fig. 4

Examples of average scintillation patterns obtained from 2000 frames for (a) pupil-plane (b) 0.28-km defocus, and (c) 0.56-km defocus modes.

Fig. 5
Fig. 5

Sample scintillation frames corresponding to scintillation variances of (a) 0.01 (pupil plane), (b) 0.20 (pupil plane), (c) 0.09 (generalized), and (d) 0.94 (generalized).

Fig. 6
Fig. 6

Sample covariance slices for source separations of (a) 35, (b) 70, and (c) 140 mm.

Fig. 7
Fig. 7

Sample generalized covariance slices for source separations of (a) and (d) 35, (b) and (e) 70, and (c) and (f) 140 mm. (a), (b), and (c) correspond to a defocus distance of 0.28 km, and (d), (e), and (f) correspond to that of 0.56 km. These have not been corrected for background information but do provide an indication of the structure and achievable resolution.

Fig. 8
Fig. 8

Sample pupil plane C n 2(z) profiles for source separations of (a) 35, (b) 70, and (c) 140 mm. The rms error of each profile is estimated to be within 20%.

Fig. 9
Fig. 9

Sample generalized SCIDAR C n 2(z) profiles for (a) source separation of 35 mm and defocus distance of 280 m, (b) source separation of 70 mm and defocus distance of 280 m, and (c) source separation of 140 mm and defocus distance of 560 m. The data used to generate these profiles were not corrected for background information. The rms error of each profile is estimated to be within 20%.

Fig. 10
Fig. 10

Sets of consecutive pupil-plane C n 2(z) profiles from (a) 10:30 a.m. and (b) 6:45 p.m. The rms error of each profile is estimated to be within 20%.

Tables (2)

Tables Icon

Table 1 Valid Altitude Range for a Variety of Source Separations

Tables Icon

Table 2 Source Separations

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Cρ=0 Kρ, hCN2hdh+nρ,
Sρ=Tρ, h×Cn2h+nρ.
SHρ=THρ, z×Cn2z+nHρ,
r0=0.42k2 secγ0L Cn2zzL5/3dz-3/5
Cρ=4Cχρ.
FK, 0, L=2π 0L HL-η, K, LΦnK, ηdη,
HL-x, K, L=k2 sin2K2xL-x2kL.
ϕnK, η=0.033Cn2ηK-11/3.
Cρ=2π 0 J0κρFκ, 0κdκ,
tanθ=D/2L-zL=ς/2zL.
zL=ςς+D L.
sx, y=dx, y-bx, y-nx, y,
s¯x, y=d¯x, y-b¯x, y-n¯x, y.
C1=sx, y-s¯x, y * sx, y-s¯x, y
=sx, y * sx, y-s¯x, y * s¯x, y
=As-As¯.
dx, y=sx, y+s¯x, y+bx, y+b¯x, y+nx, y+n¯x, y.
C2=Ad-Ad¯-Ab-Ab¯-An-An¯,
As¯=Ad¯-Ab¯-An¯
As¯=Ad¯-n¯-Ab¯
SH-ŜH=SH-ŜH2SH21/2.
Cn2zP=Ĉn2z+βW.
σI2=I2-I2I2,
C0=σI2+n,

Metrics