Abstract

We compare the system performances of two holographic recording geometries using iron-doped lithium niobate: the 90-degree and transmission geometry. We find that transmission geometry is better because the attainable dynamic range (M/#) is much higher. The only drawback of transmission geometry is the buildup of fanning, particularly during readout. Material solutions that reduce fanning such as doubly-doped photorefractive crystals make transmission geometry the clear winner.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Mok, M. Tackitt, H. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 8, 605–607 (1991).
    [CrossRef]
  2. G. Rakujic, V. Levya, A. Yariv, “Optical data storage by using wavelength multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef]
  3. F. Mok, “Angle-multiplexed storage of 5,000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef]
  4. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  5. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
    [CrossRef]
  6. J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory system: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
    [CrossRef]
  7. G. Burr, F. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90-degree geometry,” Opt. Commun. 117, 49–55 (1995).
    [CrossRef]
  8. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
    [CrossRef] [PubMed]
  9. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997).
    [CrossRef]
  10. X. An, D. Psaltis, G. Burr, “Thermal fixing of 10,000 holograms in LiNbO3Fe,” Appl. Opt. 38, 386–393 (1999).
    [CrossRef]
  11. G. Burr, “Volume holographic storage using the 90° geometry,” Ph.D dissertation, California Institute of Technology, Pasadena, Calif. (1996).
  12. K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
    [CrossRef]
  13. I. Nee, M. Müller, K. Buse, E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
    [CrossRef]
  14. Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
    [CrossRef]
  15. Y. Yang, K. Buse, D. Psaltis, “Photorefractive recording in LiNbO3:Mn,” Opt. Lett. 27, 158–160 (2002).
    [CrossRef]
  16. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  17. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vintekii, “Holographic storage in electrooptic crystals, 1. steady-state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  18. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  19. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  20. A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
    [CrossRef]
  21. X. Yi, P. Yeh, C. Gu, “Statistical-analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
    [CrossRef] [PubMed]
  22. M. P. Bernal, G. W. Burr, H. Coufal, M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
    [CrossRef]
  23. J.-J. P. Drolet, E. Chuang, G. Barbastathis, D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett. 22, 552–554 (1997).
    [CrossRef] [PubMed]
  24. D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
    [CrossRef]
  25. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
    [CrossRef]
  26. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [CrossRef] [PubMed]
  27. W. Liu, D. Psaltis, “Pixel size limit in holographic memories,” Opt. Lett. 24, 1340–1342 (1999).
    [CrossRef]
  28. G. W. Burr, I. Leyva, “Multiplexed phase-conjugate holographic data storage with a buffer hologram,” Opt. Lett. 25, 499–501 (2000).
    [CrossRef]

2002 (1)

2001 (2)

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

2000 (2)

I. Nee, M. Müller, K. Buse, E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

G. W. Burr, I. Leyva, “Multiplexed phase-conjugate holographic data storage with a buffer hologram,” Opt. Lett. 25, 499–501 (2000).
[CrossRef]

1999 (3)

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

X. An, D. Psaltis, G. Burr, “Thermal fixing of 10,000 holograms in LiNbO3Fe,” Appl. Opt. 38, 386–393 (1999).
[CrossRef]

W. Liu, D. Psaltis, “Pixel size limit in holographic memories,” Opt. Lett. 24, 1340–1342 (1999).
[CrossRef]

1998 (4)

M. P. Bernal, G. W. Burr, H. Coufal, M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

1997 (2)

1996 (1)

1995 (3)

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory system: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

G. Burr, F. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90-degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

1994 (2)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

X. Yi, P. Yeh, C. Gu, “Statistical-analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

1991 (1)

1988 (1)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vintekii, “Holographic storage in electrooptic crystals, 1. steady-state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1974 (1)

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Adibi, A.

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Akella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

An, X.

Barbastathis, G.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Bernal, M. P.

Bernal, M.-P.

Brady, D.

Burr, G.

X. An, D. Psaltis, G. Burr, “Thermal fixing of 10,000 holograms in LiNbO3Fe,” Appl. Opt. 38, 386–393 (1999).
[CrossRef]

G. Burr, F. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90-degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

G. Burr, “Volume holographic storage using the 90° geometry,” Ph.D dissertation, California Institute of Technology, Pasadena, Calif. (1996).

Burr, G. W.

Buse, K.

Y. Yang, K. Buse, D. Psaltis, “Photorefractive recording in LiNbO3:Mn,” Opt. Lett. 27, 158–160 (2002).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

I. Nee, M. Müller, K. Buse, E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Chang, T. Y.

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
[CrossRef] [PubMed]

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory system: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Christian, W.

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
[CrossRef] [PubMed]

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory system: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Chuang, E.

Coufal, H.

Drolet, J.-J. P.

Furukawa, Y.

Glass, A. M.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Grygier, R. K.

Gu, C.

Guenther, H.

Günther, H.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hoffnagle, J. A.

Hong, J. H.

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
[CrossRef] [PubMed]

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory system: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Jefferson, C. M.

Kitamura, K.

Krätzig, E.

I. Nee, M. Müller, K. Buse, E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vintekii, “Holographic storage in electrooptic crystals, 1. steady-state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Levya, V.

Leyva, I.

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Liu, W.

Macfarlane, R.

Macfarlane, R. M.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vintekii, “Holographic storage in electrooptic crystals, 1. steady-state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

McMichael, I.

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
[CrossRef] [PubMed]

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory system: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Mok, F.

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

G. Burr, F. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90-degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

F. Mok, “Angle-multiplexed storage of 5,000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef]

F. Mok, M. Tackitt, H. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 8, 605–607 (1991).
[CrossRef]

Müller, M.

I. Nee, M. Müller, K. Buse, E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

Nee, I.

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

I. Nee, M. Müller, K. Buse, E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

Neugaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Neurgaonkar, R.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vintekii, “Holographic storage in electrooptic crystals, 1. steady-state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Paek, E. G.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory system: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Peithmann, K.

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Pletcher, D.

Psaltis, D.

Quintanilla, M.

Rakujic, G.

Rodgers, K. F.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Shelby, R. M.

Sincerbox, G. T.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vintekii, “Holographic storage in electrooptic crystals, 1. steady-state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Stoll, H.

Tackitt, M.

Vintekii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vintekii, “Holographic storage in electrooptic crystals, 1. steady-state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

von der Linde, D.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Wagner, K.

Wiebrock, A.

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Yang, Y.

Y. Yang, K. Buse, D. Psaltis, “Photorefractive recording in LiNbO3:Mn,” Opt. Lett. 27, 158–160 (2002).
[CrossRef]

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

Yariv, A.

Yeh, P.

Yi, X.

Appl. Opt. (5)

Appl. Phys. B (1)

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vintekii, “Holographic storage in electrooptic crystals, 1. steady-state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Appl. Phys. (1)

I. Nee, M. Müller, K. Buse, E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Commun. (1)

G. Burr, F. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90-degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

Opt. Eng. (1)

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory system: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Opt. Lett. (9)

Sci. Am. (1)

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Science (2)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Other (2)

G. Burr, “Volume holographic storage using the 90° geometry,” Ph.D dissertation, California Institute of Technology, Pasadena, Calif. (1996).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The 90-degree geometry vs. transmission geometry. The K-vector in the 90-degree geometry is almost fixed, while the K-vector in transmission geometry can be varied by changing the outside angle between the two recording beams and is smaller than that of the 90-degree geometry.

Fig. 2
Fig. 2

Ed, Eq, Eph and Esc as functions of the magnitude of the K-vector (K) for a LiNbO3:Fe crystal. The magnitude of the K-vector in the 90-degree geometry at wavelength of 488 nm is approximately 427,900 cm-1, while K of transmission geometry can be varied between 0 to 257,508 cm-1.

Fig. 3
Fig. 3

Theoretical (solid curve) and experimental (filled circles) normalized M1(K) for transmission geometry as functions of K (with the normalized M1(K) of the 90-degree geometry equal to 1). For transmission geometry 1, the smaller K contributes an increase in the M/# by a factor of 2 compared with the 90-degree geometry.

Fig. 4
Fig. 4

Experimental setup for measuring scattering as a function of the angle. One beam of plane wave with wavelength 488 nm and optical power of P0 illuminates the center of the crystal at normal incidence. A detector with aperture diameter D is placed at a distance R from the center of the crystal to measure the scattering power Ps.

Fig. 5
Fig. 5

Measured scattering efficiency per steradian as a function of the angle. The solid line represents an exponential fit to the experimental results. The scattering noise in transmission geometry is larger than that in the 90-degree geometry, especially when the angle between the two recording beams is small.

Fig. 6
Fig. 6

Normalized signal level, scattering noise, and SSNR in transmission geometry as a function of the angle between the two recording beams inside the crystal with all the corresponding values in the 90-degree geometry normalized to 1. The SSNR in transmission geometry is better than that in the 90-degree geometry even though the scattering noise level is higher in transmission geometry.

Fig. 7
Fig. 7

Optical setup of holographic recording geometries for (a) the 90-degree and (b) transmission geometries for the measurement of fanning.

Fig. 8
Fig. 8

Averaged pixel value and standard deviation of the CCD signal as a function of time. Within an hour the fanning of transmission geometry grows to a saturation level whereas the 90-degree geometry remains almost unaffected after one hour.

Fig. 9
Fig. 9

Measured SNR degradation due to fanning. The SNR remains virtually unchanged for the 90-degree geometry whereas it deteriorates to virtually zero within an hour for transmission geometry.

Fig. 10
Fig. 10

Inter-pixel grating for the 90-degree geometry and transmission geometry. In transmission geometry, the inter-pixel grating vector is parallel to the c-axis of the crystal, while the angle between inter-pixel grating vector and the c-axis in the crystal for the 90-degree geometry is 45°.

Fig. 11
Fig. 11

Experimental setup for monitoring the evolution of the inter-pixel noise grating. The SLM, which is illuminated by a plane wave, is imaged to the CCD plane by a 4-f system consisting of two lenses. The crystal is placed at the Fourier-transform plane of the SLM.

Fig. 12
Fig. 12

Measured SNR degradation due to inter-pixel noise as a function of time for one of the 90-degree geometry and one of transmission geometry LiNbO3:Fe crystals due to inter-pixel noise. The interaction length of the 90-degree geometry crystal is 20 mm, while that of transmission geometry crystal is 4.5 mm.

Fig. 13
Fig. 13

Experimentally measured and theoretically calculated angular selectivities for one transmission geometry crystal with both extraordinary and ordinary polarizations. No apparent difference between the angular selectivities of the two cases is seen.

Tables (2)

Tables Icon

Table 1 Measured M/# and Sensitivity for the 90-Degree Geometry Crystals

Tables Icon

Table 2 Measured M/# and Sensitivity for the Transmission Geometry Crystalsa

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

η=M/#M2.
M/#= dηdt |t=0τe,
S= dη/dt|t=0IL,
M/#=Escτe/τrn3reff/2m=M1KM2reffM3m,
Esc=EqEph2+Ed2NA/NDEph2+Ed+Eq2,
M1K=EqEph2+Ed2Ed+Eq,
Eq= eNAND-NAKND,
Eph= κDγDNAeμqDsD,
Ed= kBTe K,
ηs= Ps/P0πD/2R2,
SNR= μ1-μ0σ12+σ02,
NIP|90-degNIP|Trans=cos245°22 exp-0.5×2×20.452 exp-0.5×0.45×2=2.1,
NIP|90-degNIP|Trans=cos245°=1/2.
Δθ=λ/L,
Δθ= λ cosθsL sinθs+θr,

Metrics