Abstract

Penetration depth is investigated in terms of the performance of transverse image resolution and signal level in human cortex under single-, two-, and three-photon fluorescence microscopy. Simulation results show that, in a double-layer human cortex structure consisting of gray and white matter media, the signal level is strongly affected by the existence of the white matter medium under three-photon excitation. Compared with three-photon excitation, two-photon excitation keeps a better signal level and sacrifices a slight degradation in image resolution. In a thick gray matter medium, a penetration depth of 1500 μm with a near-diffraction-limited resolution is obtainable under three-photon excitation. It is also demonstrated that the numerical aperture has a slight influence on image resolution and signal level under two- and three-photon excitation because of the nonlinear nature in the excitation process.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Andersson, S. Montan, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE23, 1798–1805 (1987).
    [CrossRef]
  2. W. A. Mohler, J. G. White, “Multiphoton laser scanning microscopy for four-dimensional analysis of caenorhabditis elegans embryonic development,” Opt. Exp. 3, 325–331 (1998); http://www.opticsexpress.org .
    [CrossRef]
  3. W. J. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  4. M. Gu, “Resolution in three-photon fluorescence scanning microscopy,” Opt. Lett. 21, 988–990 (1996).
    [CrossRef] [PubMed]
  5. I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femetosecond Ti-sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
    [CrossRef]
  6. I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon excitation of a tryptophan derivative using a fs-Ti-sapphire laser,” Biospectroscopy 2, 9–15 (1996).
    [CrossRef]
  7. V. E. Centonze, J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75, 2015–2024 (1998).
    [CrossRef] [PubMed]
  8. W. Denk, K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18, 351–357 (1997).
    [CrossRef] [PubMed]
  9. D. W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9, 66–69 (1999).
    [CrossRef] [PubMed]
  10. S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, K. Delaney, “In vivo two-photon imaging of odor-evoked calcium signals in dentrites of rat mitral cells,” Proc. Natl. Acad. Sci. USA 98, 1230–1234 (2001).
    [CrossRef]
  11. K. Svoboda, W. Denk, D. Kleinfeld, D. W. Tank, “In vivo dentritic calcium dynamics in neocortical pyramid neurons,” Nature (London) 385, 161–165 (1997).
    [CrossRef]
  12. F. Helmchen, K. Svoboda, W. Denk, D. W. Tank, “In vivo denfritic calcium dynamics in deep-layer cortical pyramidal neurons,” Nature Neurosci. 2, 989–996 (1999).
    [CrossRef]
  13. K. Svoboda, F. Helmchen, W. Denk, D. W. Tank, “Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo,” Nature Neuronsci. 2, 65–73 (1999).
    [CrossRef]
  14. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
    [CrossRef] [PubMed]
  15. H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
    [CrossRef]
  16. P. Lenz, “Fluorescence measurement in thick tissue layers by linear or nonlinear long-wavelength excitation,” Appl. Opt. 38, 3662–3669 (1999).
    [CrossRef]
  17. X. Y. Deng, X. S. Gan, M. Gu, “Multiphoton fluorescence microscopic imaging through double-layer turbid tissue media,” J. Appl. Phys. 91, 4659–4665 (2002).
    [CrossRef]
  18. X. S. Gan, M. Gu, “Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media,” Opt. Lett. 24, 741–743 (1999).
    [CrossRef]
  19. X. S. Gan, M. Gu, “Fluorescence microscope imaging through tissue-like turbid media,” J. Appl. Phys. 87, 3214–3221 (2000).
    [CrossRef]
  20. M. Gu, X. S. Gan, A. Kisteman, M. Xu, “Comparison of penetration depth between single-photon excitation and two-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
    [CrossRef]
  21. X. S. Gan, M. Gu, “Microscopic image reconstruction through tissue-like turbid media,” Opt. Commun. 207, 149–154 (2002).
    [CrossRef]
  22. B. Fischl, A. M. Dale, “Measuring the thickness of the human cerebral cortex from magnetic resonance images,” Proc. Natl. Acad. Sci. USA 97, 11044–11049 (2000).
    [CrossRef]
  23. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” App. Opt. 39, 1194–1201 (2000).
    [CrossRef]
  24. V. Daria, C. M. Blanca, O. Nakamura, S. Kawata, C. Saloma, “Image contrast enhancement for two-photon fluorescence microscopy in a turbid medium,” Appl. Opt. 37, 7960–7967 (1998).
    [CrossRef]
  25. D. Kleinfeld, P. P. Mitra, F. Helmchen, W. Denk, “Fluctuation and stimulus-induced changes in blood flow observed in individual capillaries in layer 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).
    [CrossRef]

2002 (2)

X. S. Gan, M. Gu, “Microscopic image reconstruction through tissue-like turbid media,” Opt. Commun. 207, 149–154 (2002).
[CrossRef]

X. Y. Deng, X. S. Gan, M. Gu, “Multiphoton fluorescence microscopic imaging through double-layer turbid tissue media,” J. Appl. Phys. 91, 4659–4665 (2002).
[CrossRef]

2001 (2)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[CrossRef] [PubMed]

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, K. Delaney, “In vivo two-photon imaging of odor-evoked calcium signals in dentrites of rat mitral cells,” Proc. Natl. Acad. Sci. USA 98, 1230–1234 (2001).
[CrossRef]

2000 (4)

B. Fischl, A. M. Dale, “Measuring the thickness of the human cerebral cortex from magnetic resonance images,” Proc. Natl. Acad. Sci. USA 97, 11044–11049 (2000).
[CrossRef]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” App. Opt. 39, 1194–1201 (2000).
[CrossRef]

X. S. Gan, M. Gu, “Fluorescence microscope imaging through tissue-like turbid media,” J. Appl. Phys. 87, 3214–3221 (2000).
[CrossRef]

M. Gu, X. S. Gan, A. Kisteman, M. Xu, “Comparison of penetration depth between single-photon excitation and two-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[CrossRef]

1999 (5)

F. Helmchen, K. Svoboda, W. Denk, D. W. Tank, “In vivo denfritic calcium dynamics in deep-layer cortical pyramidal neurons,” Nature Neurosci. 2, 989–996 (1999).
[CrossRef]

K. Svoboda, F. Helmchen, W. Denk, D. W. Tank, “Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo,” Nature Neuronsci. 2, 65–73 (1999).
[CrossRef]

X. S. Gan, M. Gu, “Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media,” Opt. Lett. 24, 741–743 (1999).
[CrossRef]

P. Lenz, “Fluorescence measurement in thick tissue layers by linear or nonlinear long-wavelength excitation,” Appl. Opt. 38, 3662–3669 (1999).
[CrossRef]

D. W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9, 66–69 (1999).
[CrossRef] [PubMed]

1998 (4)

V. Daria, C. M. Blanca, O. Nakamura, S. Kawata, C. Saloma, “Image contrast enhancement for two-photon fluorescence microscopy in a turbid medium,” Appl. Opt. 37, 7960–7967 (1998).
[CrossRef]

D. Kleinfeld, P. P. Mitra, F. Helmchen, W. Denk, “Fluctuation and stimulus-induced changes in blood flow observed in individual capillaries in layer 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).
[CrossRef]

V. E. Centonze, J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75, 2015–2024 (1998).
[CrossRef] [PubMed]

W. A. Mohler, J. G. White, “Multiphoton laser scanning microscopy for four-dimensional analysis of caenorhabditis elegans embryonic development,” Opt. Exp. 3, 325–331 (1998); http://www.opticsexpress.org .
[CrossRef]

1997 (2)

W. Denk, K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18, 351–357 (1997).
[CrossRef] [PubMed]

K. Svoboda, W. Denk, D. Kleinfeld, D. W. Tank, “In vivo dentritic calcium dynamics in neocortical pyramid neurons,” Nature (London) 385, 161–165 (1997).
[CrossRef]

1996 (2)

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon excitation of a tryptophan derivative using a fs-Ti-sapphire laser,” Biospectroscopy 2, 9–15 (1996).
[CrossRef]

M. Gu, “Resolution in three-photon fluorescence scanning microscopy,” Opt. Lett. 21, 988–990 (1996).
[CrossRef] [PubMed]

1995 (1)

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femetosecond Ti-sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

1990 (1)

W. J. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1987 (1)

P. S. Andersson, S. Montan, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE23, 1798–1805 (1987).
[CrossRef]

Andersson, P. S.

P. S. Andersson, S. Montan, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE23, 1798–1805 (1987).
[CrossRef]

Beaurepaire, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[CrossRef] [PubMed]

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, K. Delaney, “In vivo two-photon imaging of odor-evoked calcium signals in dentrites of rat mitral cells,” Proc. Natl. Acad. Sci. USA 98, 1230–1234 (2001).
[CrossRef]

Berns, M. W.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” App. Opt. 39, 1194–1201 (2000).
[CrossRef]

Blanca, C. M.

Centonze, V. E.

V. E. Centonze, J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75, 2015–2024 (1998).
[CrossRef] [PubMed]

Chaigneau, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[CrossRef] [PubMed]

Charpak, S.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[CrossRef] [PubMed]

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, K. Delaney, “In vivo two-photon imaging of odor-evoked calcium signals in dentrites of rat mitral cells,” Proc. Natl. Acad. Sci. USA 98, 1230–1234 (2001).
[CrossRef]

Coleno, M.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” App. Opt. 39, 1194–1201 (2000).
[CrossRef]

Dale, A. M.

B. Fischl, A. M. Dale, “Measuring the thickness of the human cerebral cortex from magnetic resonance images,” Proc. Natl. Acad. Sci. USA 97, 11044–11049 (2000).
[CrossRef]

Daria, V.

Delaney, K.

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, K. Delaney, “In vivo two-photon imaging of odor-evoked calcium signals in dentrites of rat mitral cells,” Proc. Natl. Acad. Sci. USA 98, 1230–1234 (2001).
[CrossRef]

Deng, X. Y.

X. Y. Deng, X. S. Gan, M. Gu, “Multiphoton fluorescence microscopic imaging through double-layer turbid tissue media,” J. Appl. Phys. 91, 4659–4665 (2002).
[CrossRef]

Denk, W.

K. Svoboda, F. Helmchen, W. Denk, D. W. Tank, “Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo,” Nature Neuronsci. 2, 65–73 (1999).
[CrossRef]

F. Helmchen, K. Svoboda, W. Denk, D. W. Tank, “In vivo denfritic calcium dynamics in deep-layer cortical pyramidal neurons,” Nature Neurosci. 2, 989–996 (1999).
[CrossRef]

D. Kleinfeld, P. P. Mitra, F. Helmchen, W. Denk, “Fluctuation and stimulus-induced changes in blood flow observed in individual capillaries in layer 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).
[CrossRef]

W. Denk, K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18, 351–357 (1997).
[CrossRef] [PubMed]

K. Svoboda, W. Denk, D. Kleinfeld, D. W. Tank, “In vivo dentritic calcium dynamics in neocortical pyramid neurons,” Nature (London) 385, 161–165 (1997).
[CrossRef]

Denk, W. J.

W. J. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Dunn, A. K.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” App. Opt. 39, 1194–1201 (2000).
[CrossRef]

Fischl, B.

B. Fischl, A. M. Dale, “Measuring the thickness of the human cerebral cortex from magnetic resonance images,” Proc. Natl. Acad. Sci. USA 97, 11044–11049 (2000).
[CrossRef]

Gan, X. S.

X. S. Gan, M. Gu, “Microscopic image reconstruction through tissue-like turbid media,” Opt. Commun. 207, 149–154 (2002).
[CrossRef]

X. Y. Deng, X. S. Gan, M. Gu, “Multiphoton fluorescence microscopic imaging through double-layer turbid tissue media,” J. Appl. Phys. 91, 4659–4665 (2002).
[CrossRef]

M. Gu, X. S. Gan, A. Kisteman, M. Xu, “Comparison of penetration depth between single-photon excitation and two-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[CrossRef]

X. S. Gan, M. Gu, “Fluorescence microscope imaging through tissue-like turbid media,” J. Appl. Phys. 87, 3214–3221 (2000).
[CrossRef]

X. S. Gan, M. Gu, “Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media,” Opt. Lett. 24, 741–743 (1999).
[CrossRef]

Goldbach, T.

H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
[CrossRef]

Gryczynski, I.

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon excitation of a tryptophan derivative using a fs-Ti-sapphire laser,” Biospectroscopy 2, 9–15 (1996).
[CrossRef]

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femetosecond Ti-sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

Gu, M.

X. Y. Deng, X. S. Gan, M. Gu, “Multiphoton fluorescence microscopic imaging through double-layer turbid tissue media,” J. Appl. Phys. 91, 4659–4665 (2002).
[CrossRef]

X. S. Gan, M. Gu, “Microscopic image reconstruction through tissue-like turbid media,” Opt. Commun. 207, 149–154 (2002).
[CrossRef]

X. S. Gan, M. Gu, “Fluorescence microscope imaging through tissue-like turbid media,” J. Appl. Phys. 87, 3214–3221 (2000).
[CrossRef]

M. Gu, X. S. Gan, A. Kisteman, M. Xu, “Comparison of penetration depth between single-photon excitation and two-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[CrossRef]

X. S. Gan, M. Gu, “Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media,” Opt. Lett. 24, 741–743 (1999).
[CrossRef]

M. Gu, “Resolution in three-photon fluorescence scanning microscopy,” Opt. Lett. 21, 988–990 (1996).
[CrossRef] [PubMed]

Helmchen, F.

K. Svoboda, F. Helmchen, W. Denk, D. W. Tank, “Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo,” Nature Neuronsci. 2, 65–73 (1999).
[CrossRef]

F. Helmchen, K. Svoboda, W. Denk, D. W. Tank, “In vivo denfritic calcium dynamics in deep-layer cortical pyramidal neurons,” Nature Neurosci. 2, 989–996 (1999).
[CrossRef]

D. Kleinfeld, P. P. Mitra, F. Helmchen, W. Denk, “Fluctuation and stimulus-induced changes in blood flow observed in individual capillaries in layer 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).
[CrossRef]

Kahn, T.

H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
[CrossRef]

Kawata, S.

Kisteman, A.

M. Gu, X. S. Gan, A. Kisteman, M. Xu, “Comparison of penetration depth between single-photon excitation and two-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[CrossRef]

Kleinfeld, D.

D. Kleinfeld, P. P. Mitra, F. Helmchen, W. Denk, “Fluctuation and stimulus-induced changes in blood flow observed in individual capillaries in layer 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).
[CrossRef]

K. Svoboda, W. Denk, D. Kleinfeld, D. W. Tank, “In vivo dentritic calcium dynamics in neocortical pyramid neurons,” Nature (London) 385, 161–165 (1997).
[CrossRef]

Lakowicz, J. R.

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon excitation of a tryptophan derivative using a fs-Ti-sapphire laser,” Biospectroscopy 2, 9–15 (1996).
[CrossRef]

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femetosecond Ti-sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

Lenz, P.

Malak, H.

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon excitation of a tryptophan derivative using a fs-Ti-sapphire laser,” Biospectroscopy 2, 9–15 (1996).
[CrossRef]

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femetosecond Ti-sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

Mertz, J.

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, K. Delaney, “In vivo two-photon imaging of odor-evoked calcium signals in dentrites of rat mitral cells,” Proc. Natl. Acad. Sci. USA 98, 1230–1234 (2001).
[CrossRef]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[CrossRef] [PubMed]

Mitra, P. P.

D. Kleinfeld, P. P. Mitra, F. Helmchen, W. Denk, “Fluctuation and stimulus-induced changes in blood flow observed in individual capillaries in layer 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).
[CrossRef]

Mohler, W. A.

W. A. Mohler, J. G. White, “Multiphoton laser scanning microscopy for four-dimensional analysis of caenorhabditis elegans embryonic development,” Opt. Exp. 3, 325–331 (1998); http://www.opticsexpress.org .
[CrossRef]

Montan, S.

P. S. Andersson, S. Montan, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE23, 1798–1805 (1987).
[CrossRef]

Moreaux, L.

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, K. Delaney, “In vivo two-photon imaging of odor-evoked calcium signals in dentrites of rat mitral cells,” Proc. Natl. Acad. Sci. USA 98, 1230–1234 (2001).
[CrossRef]

Nakamura, O.

Oheim, M.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[CrossRef] [PubMed]

Piston, D. W.

D. W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9, 66–69 (1999).
[CrossRef] [PubMed]

Saloma, C.

Schober, R.

H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
[CrossRef]

Schulze, P. C.

H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
[CrossRef]

Schwarzmaier, H. J.

H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
[CrossRef]

Strickler, J. H.

W. J. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Svanberg, S.

P. S. Andersson, S. Montan, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE23, 1798–1805 (1987).
[CrossRef]

Svoboda, K.

F. Helmchen, K. Svoboda, W. Denk, D. W. Tank, “In vivo denfritic calcium dynamics in deep-layer cortical pyramidal neurons,” Nature Neurosci. 2, 989–996 (1999).
[CrossRef]

K. Svoboda, F. Helmchen, W. Denk, D. W. Tank, “Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo,” Nature Neuronsci. 2, 65–73 (1999).
[CrossRef]

K. Svoboda, W. Denk, D. Kleinfeld, D. W. Tank, “In vivo dentritic calcium dynamics in neocortical pyramid neurons,” Nature (London) 385, 161–165 (1997).
[CrossRef]

W. Denk, K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18, 351–357 (1997).
[CrossRef] [PubMed]

Tank, D. W.

K. Svoboda, F. Helmchen, W. Denk, D. W. Tank, “Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo,” Nature Neuronsci. 2, 65–73 (1999).
[CrossRef]

F. Helmchen, K. Svoboda, W. Denk, D. W. Tank, “In vivo denfritic calcium dynamics in deep-layer cortical pyramidal neurons,” Nature Neurosci. 2, 989–996 (1999).
[CrossRef]

K. Svoboda, W. Denk, D. Kleinfeld, D. W. Tank, “In vivo dentritic calcium dynamics in neocortical pyramid neurons,” Nature (London) 385, 161–165 (1997).
[CrossRef]

Tromberg, B. J.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” App. Opt. 39, 1194–1201 (2000).
[CrossRef]

Ulrich, F.

H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
[CrossRef]

Wallace, V. P.

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” App. Opt. 39, 1194–1201 (2000).
[CrossRef]

Webb, W. W.

W. J. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

White, J. G.

W. A. Mohler, J. G. White, “Multiphoton laser scanning microscopy for four-dimensional analysis of caenorhabditis elegans embryonic development,” Opt. Exp. 3, 325–331 (1998); http://www.opticsexpress.org .
[CrossRef]

V. E. Centonze, J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75, 2015–2024 (1998).
[CrossRef] [PubMed]

Xu, M.

M. Gu, X. S. Gan, A. Kisteman, M. Xu, “Comparison of penetration depth between single-photon excitation and two-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[CrossRef]

Yaroslavsky, A.

H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
[CrossRef]

Yaroslavsky, I.

H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
[CrossRef]

App. Opt. (1)

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” App. Opt. 39, 1194–1201 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Gu, X. S. Gan, A. Kisteman, M. Xu, “Comparison of penetration depth between single-photon excitation and two-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[CrossRef]

Biophys. J. (1)

V. E. Centonze, J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75, 2015–2024 (1998).
[CrossRef] [PubMed]

Biospectroscopy (1)

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon excitation of a tryptophan derivative using a fs-Ti-sapphire laser,” Biospectroscopy 2, 9–15 (1996).
[CrossRef]

Chem. Phys. Lett. (1)

I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femetosecond Ti-sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. S. Andersson, S. Montan, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE23, 1798–1805 (1987).
[CrossRef]

J. Appl. Phys. (2)

X. Y. Deng, X. S. Gan, M. Gu, “Multiphoton fluorescence microscopic imaging through double-layer turbid tissue media,” J. Appl. Phys. 91, 4659–4665 (2002).
[CrossRef]

X. S. Gan, M. Gu, “Fluorescence microscope imaging through tissue-like turbid media,” J. Appl. Phys. 87, 3214–3221 (2000).
[CrossRef]

J. Neurosci. Methods (1)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[CrossRef] [PubMed]

Nature (London) (1)

K. Svoboda, W. Denk, D. Kleinfeld, D. W. Tank, “In vivo dentritic calcium dynamics in neocortical pyramid neurons,” Nature (London) 385, 161–165 (1997).
[CrossRef]

Nature Neuronsci. (1)

K. Svoboda, F. Helmchen, W. Denk, D. W. Tank, “Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo,” Nature Neuronsci. 2, 65–73 (1999).
[CrossRef]

Nature Neurosci. (1)

F. Helmchen, K. Svoboda, W. Denk, D. W. Tank, “In vivo denfritic calcium dynamics in deep-layer cortical pyramidal neurons,” Nature Neurosci. 2, 989–996 (1999).
[CrossRef]

Neuron (1)

W. Denk, K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18, 351–357 (1997).
[CrossRef] [PubMed]

Opt. Commun. (1)

X. S. Gan, M. Gu, “Microscopic image reconstruction through tissue-like turbid media,” Opt. Commun. 207, 149–154 (2002).
[CrossRef]

Opt. Exp. (1)

W. A. Mohler, J. G. White, “Multiphoton laser scanning microscopy for four-dimensional analysis of caenorhabditis elegans embryonic development,” Opt. Exp. 3, 325–331 (1998); http://www.opticsexpress.org .
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (3)

B. Fischl, A. M. Dale, “Measuring the thickness of the human cerebral cortex from magnetic resonance images,” Proc. Natl. Acad. Sci. USA 97, 11044–11049 (2000).
[CrossRef]

D. Kleinfeld, P. P. Mitra, F. Helmchen, W. Denk, “Fluctuation and stimulus-induced changes in blood flow observed in individual capillaries in layer 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).
[CrossRef]

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, K. Delaney, “In vivo two-photon imaging of odor-evoked calcium signals in dentrites of rat mitral cells,” Proc. Natl. Acad. Sci. USA 98, 1230–1234 (2001).
[CrossRef]

Science (1)

W. J. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Trends Cell Biol. (1)

D. W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9, 66–69 (1999).
[CrossRef] [PubMed]

Other (1)

H. J. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, T. Kahn, F. Ulrich, P. C. Schulze, R. Schober, “Optical properties of native and coagulated human brain structures,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and System VII, R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. T. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenback, L. P. Tate, G. W. Watson, eds., Proc. SPIE2970, 492–499 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Comparison of 1p, 2p, and 3p fluorescence EPSFs in cortex1 (numerical aperture is 0.25). (a) At the focal depth of 800 μm (within the gray matter layer); (b) at the focal depth of 1000 μm (on the boundary); (c) at the focal depth of 1200 μm (within the white matter layer).

Fig. 2
Fig. 2

(a) Transverse resolution Γ and (b) signal level as a function of the focal depth in cortex1 under 1p, 2p, and 3p excitation (numerical aperture is 0.25).

Fig. 3
Fig. 3

(a) Transverse resolution Γ and (b) signal level for different values of the numerical aperture (NA) under 1p excitation in cortex1.

Fig. 4
Fig. 4

(a) Transverse resolution Γ and (b) signal level for different values of the numerical aperture (NA) under 2p excitation in cortex1.

Fig. 5
Fig. 5

(a) Transverse resolution Γ and (b) signal level for different values of the numerical aperture (NA) under 3p excitation in cortex1.

Fig. 6
Fig. 6

(a) Transverse resolution Γ and (b) signal level as a function of focal depth under 1p, 2p, and 3p excitation in cortex2 (numerical aperture is 0.25).

Fig. 7
Fig. 7

(a) Transverse resolution Γ and (b) signal level for different values of the numerical aperture (NA) under 1p excitation in cortex2.

Fig. 8
Fig. 8

(a) Transverse resolution Γ and (b) signal level for different values of the numerical aperture (NA) under 2p excitation in cortex2.

Fig. 9
Fig. 9

(a) Transverse resolution Γ and (b) signal level for different values of the numerical aperture (NA) under 3p excitation in cortex2.

Tables (1)

Tables Icon

Table 1 Absorption and Scattering Parameters of Human Cortex under 1p, 2p, and 3p Excitationa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

pnr=αnIexnr,
Inx, y=- hnx2+y2½ ×Ox-x, y-ydx dy.

Metrics