Abstract

Design issues for a 30-m highly segmented mirror are explored, with emphasis on parametric models of simple, inexpensive segments. A mirror with many small segments offers cost savings through quantity production and permits high-order active and adaptive wave-front corrections. For a 30-m f/1.5 paraboloidal mirror made of spherical, hexagonal glass segments, with simple warping harnesses and three-point supports, the maximum segment diameter is ∼100 mm, and the minimum segment thickness is ∼5 mm. Large-amplitude, low-order gravitational deformations in the mirror cell can be compensated if the segments are mounted on a plate floating on astatic supports. Because gravitational deformations in the plate are small, the segment actuators require a stroke of only a few tens of micrometers, and the segment positions can be measured by a wave-front sensor.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Angel, M. Lloyd-Hart, K. Hedge, R. Sarlot, C. Peng, “The 20/20 telescope: MCAO imaging at the individual and combined foci,” in Proceedings of ESO Conference on Beyond Conventional Adaptive Optics, R. Ragazzoni, S. Esposito, eds. (to be published).
  2. A. D. Gleckler, D. J. Markason, G. H. Ames, “PAMELA: control of a segmented mirror via wavefront tilt and segment piston sensing,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 176–189 (1991).
    [CrossRef]
  3. S. C. Fawcett, “Development of adaptive optical segments with integrated wave front sensing,” in Active and Adaptive Optical Components and Systems II, M. A. Ealey, ed., Proc. SPIE1920, 193–199 (1993).
    [CrossRef]
  4. J. M. Rakoczy, E. E. Montgomery, J. L. Lindner, “Recent enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed at MSFC,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation and Commissioning, T. A. Sebring, T. Anderson, eds., Proc. SPIE4004, 352–362 (2000).
    [CrossRef]
  5. J. E. Nelson, T. S. Mast, S. M. Faber, eds., “The design of the Keck Observatory and Telescope,” Keck Observatory Rep. 90 (Keck Observatory, Kamuela, Hawaii, 1985).
  6. V. L. Krabbendam, T. A. Sebring, F. B. Ray, J. R. Fowler, “Development and performance of Hobby-Eberly Telescope 11-m segmented mirror,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 436–445 (1998).
    [CrossRef]
  7. L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
    [CrossRef]
  8. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965).
    [CrossRef]
  9. G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, D. Kirkman, “Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm,” Appl. Opt. 37, 140–155 (1998).
    [CrossRef]
  10. J. E. Nelson, T. S. Mast, eds., “Conceptual design for a thirty-meter telescope,” CELT Rep. 34 (University of California, Santa Cruz, Santa Cruz, Calif., 2002).
  11. P.-S. Kildal, L. A. Baker, T. Hagfors, “The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system,” Proc. IEEE 82, 714–724 (1994).
    [CrossRef]
  12. J. M. Sasian, “Four-mirror optical system for large telescopes,” Opt. Eng. 29, 1181–1185 (1990).
    [CrossRef]
  13. D. Korsch, “Closed form solution for three-mirror telescopes, corrected for spherical aberration, coma, astigmatism, and field curvature,” Appl. Opt. 11, 2986–2987 (1972).
    [CrossRef] [PubMed]
  14. R. N. Wilson, B. Delabre, “New optical solutions for very large telescopes using a spherical primary,” Astron. Astrophys. 294, 322–338 (1995).
  15. M. Lloyd-Hart, “Thermal performance enhancement of adaptive optics by use of a deformable secondary mirror,” Publ. Astron. Soc. Pac. 112, 264–272 (2000).
    [CrossRef]
  16. R. N. Wilson, Reflecting Telescope Optics II (Springer-Verlag, Berlin, Germany, 1999), Chap. 3.
    [CrossRef]
  17. M. Ealey, “Actuators: design fundamentals, key performance specifications, and parametric trades,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 346–362 (1991).
    [CrossRef]
  18. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 3.
  19. T. S. Mast, J. E. Nelson, G. E. Sommargren, “Primary mirror segment fabrication for CELT,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 43–58 (2000).
    [CrossRef]
  20. T. S. Mast, J. E. Nelson, “The fabrication of large optical surfaces using a combination of polishing and mirror bending,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 670–681 (1990).
    [CrossRef]
  21. J. E. Nelson, J. Lubliner, T. S. Mast, “Telescope mirror supports: plate deflections on point supports,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 212–228 (1982).
    [CrossRef]
  22. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  23. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, Vol. 19, E. Wolf, ed. (North-Holland, Amsterdam, 1981), pp. 281–376.
    [CrossRef]
  24. J. B. Hindle, “Floatation systems,” in Amateur Telescope Making, A. G. Ingalls, ed., (Munn, 1947), pp. 229–234.
  25. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998), Chap. 6.
  26. F. Roddier, ed., Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, UK, 1999), Chap. 3.
    [CrossRef]
  27. J. N. Bachall, R. M. Soneira, “The distribution of stars to V = 16th magnitude near the north galactic pole: normalization, clustering properties, and counts in various bands,” Astrophys. J. 246, 122–135 (1981).
    [CrossRef]
  28. G. Chanan, M. Troy, E. Sirko, “Phase discontinuity sensing: a method for phasing segmented mirrors in the infrared,” Appl. Opt. 38, 704–713 (1999).
    [CrossRef]
  29. N. Thomas, J. Wolfe, “UV-shifted durable silver coating for astronomical mirrors,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 312–323 (2000).
    [CrossRef]
  30. S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 310–314 (1982).
    [CrossRef]
  31. D. Y. Song, H. A. Macleod, “Multilayer coatings for astronomical telescope mirrors,” in Southwest Conference on Optics, S. C. Stotlar, ed., Proc. SPIE540, 156–159 (1985).
    [CrossRef]

2000 (1)

M. Lloyd-Hart, “Thermal performance enhancement of adaptive optics by use of a deformable secondary mirror,” Publ. Astron. Soc. Pac. 112, 264–272 (2000).
[CrossRef]

1999 (1)

1998 (1)

1995 (1)

R. N. Wilson, B. Delabre, “New optical solutions for very large telescopes using a spherical primary,” Astron. Astrophys. 294, 322–338 (1995).

1994 (1)

P.-S. Kildal, L. A. Baker, T. Hagfors, “The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system,” Proc. IEEE 82, 714–724 (1994).
[CrossRef]

1990 (1)

J. M. Sasian, “Four-mirror optical system for large telescopes,” Opt. Eng. 29, 1181–1185 (1990).
[CrossRef]

1981 (1)

J. N. Bachall, R. M. Soneira, “The distribution of stars to V = 16th magnitude near the north galactic pole: normalization, clustering properties, and counts in various bands,” Astrophys. J. 246, 122–135 (1981).
[CrossRef]

1976 (1)

1972 (1)

1965 (1)

Adams, M. T.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Ames, G. H.

A. D. Gleckler, D. J. Markason, G. H. Ames, “PAMELA: control of a segmented mirror via wavefront tilt and segment piston sensing,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 176–189 (1991).
[CrossRef]

Angel, R.

R. Angel, M. Lloyd-Hart, K. Hedge, R. Sarlot, C. Peng, “The 20/20 telescope: MCAO imaging at the individual and combined foci,” in Proceedings of ESO Conference on Beyond Conventional Adaptive Optics, R. Ragazzoni, S. Esposito, eds. (to be published).

Bachall, J. N.

J. N. Bachall, R. M. Soneira, “The distribution of stars to V = 16th magnitude near the north galactic pole: normalization, clustering properties, and counts in various bands,” Astrophys. J. 246, 122–135 (1981).
[CrossRef]

Baker, L. A.

P.-S. Kildal, L. A. Baker, T. Hagfors, “The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system,” Proc. IEEE 82, 714–724 (1994).
[CrossRef]

Barnes, T. G.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Booth, J. A.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Browning, S. D.

S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 310–314 (1982).
[CrossRef]

Chanan, G.

Cornell, M. E.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Dekens, F.

Delabre, B.

R. N. Wilson, B. Delabre, “New optical solutions for very large telescopes using a spherical primary,” Astron. Astrophys. 294, 322–338 (1995).

Ealey, M.

M. Ealey, “Actuators: design fundamentals, key performance specifications, and parametric trades,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 346–362 (1991).
[CrossRef]

Faber, S. M.

J. E. Nelson, T. S. Mast, S. M. Faber, eds., “The design of the Keck Observatory and Telescope,” Keck Observatory Rep. 90 (Keck Observatory, Kamuela, Hawaii, 1985).

Fawcett, S. C.

S. C. Fawcett, “Development of adaptive optical segments with integrated wave front sensing,” in Active and Adaptive Optical Components and Systems II, M. A. Ealey, ed., Proc. SPIE1920, 193–199 (1993).
[CrossRef]

Fowler, J. R.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

V. L. Krabbendam, T. A. Sebring, F. B. Ray, J. R. Fowler, “Development and performance of Hobby-Eberly Telescope 11-m segmented mirror,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 436–445 (1998).
[CrossRef]

Fried, D. L.

Gaffney, N.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Glaspey, J. W.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Gleckler, A. D.

A. D. Gleckler, D. J. Markason, G. H. Ames, “PAMELA: control of a segmented mirror via wavefront tilt and segment piston sensing,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 176–189 (1991).
[CrossRef]

Good, J.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Hagfors, T.

P.-S. Kildal, L. A. Baker, T. Hagfors, “The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system,” Proc. IEEE 82, 714–724 (1994).
[CrossRef]

Hardy, J. W.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998), Chap. 6.

Hedge, K.

R. Angel, M. Lloyd-Hart, K. Hedge, R. Sarlot, C. Peng, “The 20/20 telescope: MCAO imaging at the individual and combined foci,” in Proceedings of ESO Conference on Beyond Conventional Adaptive Optics, R. Ragazzoni, S. Esposito, eds. (to be published).

Hill, G. J.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Hindle, J. B.

J. B. Hindle, “Floatation systems,” in Amateur Telescope Making, A. G. Ingalls, ed., (Munn, 1947), pp. 229–234.

Jacobson, M. R.

S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 310–314 (1982).
[CrossRef]

Kelton, P. W.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Kildal, P.-S.

P.-S. Kildal, L. A. Baker, T. Hagfors, “The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system,” Proc. IEEE 82, 714–724 (1994).
[CrossRef]

Kirkman, D.

Korsch, D.

Krabbendam, V. L.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

V. L. Krabbendam, T. A. Sebring, F. B. Ray, J. R. Fowler, “Development and performance of Hobby-Eberly Telescope 11-m segmented mirror,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 436–445 (1998).
[CrossRef]

Lindner, J. L.

J. M. Rakoczy, E. E. Montgomery, J. L. Lindner, “Recent enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed at MSFC,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation and Commissioning, T. A. Sebring, T. Anderson, eds., Proc. SPIE4004, 352–362 (2000).
[CrossRef]

Lloyd-Hart, M.

M. Lloyd-Hart, “Thermal performance enhancement of adaptive optics by use of a deformable secondary mirror,” Publ. Astron. Soc. Pac. 112, 264–272 (2000).
[CrossRef]

R. Angel, M. Lloyd-Hart, K. Hedge, R. Sarlot, C. Peng, “The 20/20 telescope: MCAO imaging at the individual and combined foci,” in Proceedings of ESO Conference on Beyond Conventional Adaptive Optics, R. Ragazzoni, S. Esposito, eds. (to be published).

Long, L.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Lubliner, J.

J. E. Nelson, J. Lubliner, T. S. Mast, “Telescope mirror supports: plate deflections on point supports,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 212–228 (1982).
[CrossRef]

Macleod, H. A.

S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 310–314 (1982).
[CrossRef]

D. Y. Song, H. A. Macleod, “Multilayer coatings for astronomical telescope mirrors,” in Southwest Conference on Optics, S. C. Stotlar, ed., Proc. SPIE540, 156–159 (1985).
[CrossRef]

MacQueen, P. J.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Markason, D. J.

A. D. Gleckler, D. J. Markason, G. H. Ames, “PAMELA: control of a segmented mirror via wavefront tilt and segment piston sensing,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 176–189 (1991).
[CrossRef]

Mast, T.

Mast, T. S.

J. E. Nelson, T. S. Mast, eds., “Conceptual design for a thirty-meter telescope,” CELT Rep. 34 (University of California, Santa Cruz, Santa Cruz, Calif., 2002).

J. E. Nelson, J. Lubliner, T. S. Mast, “Telescope mirror supports: plate deflections on point supports,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 212–228 (1982).
[CrossRef]

T. S. Mast, J. E. Nelson, G. E. Sommargren, “Primary mirror segment fabrication for CELT,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 43–58 (2000).
[CrossRef]

T. S. Mast, J. E. Nelson, “The fabrication of large optical surfaces using a combination of polishing and mirror bending,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 670–681 (1990).
[CrossRef]

J. E. Nelson, T. S. Mast, S. M. Faber, eds., “The design of the Keck Observatory and Telescope,” Keck Observatory Rep. 90 (Keck Observatory, Kamuela, Hawaii, 1985).

Michaels, S.

Montgomery, E. E.

J. M. Rakoczy, E. E. Montgomery, J. L. Lindner, “Recent enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed at MSFC,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation and Commissioning, T. A. Sebring, T. Anderson, eds., Proc. SPIE4004, 352–362 (2000).
[CrossRef]

Nelson, J.

Nelson, J. E.

J. E. Nelson, T. S. Mast, eds., “Conceptual design for a thirty-meter telescope,” CELT Rep. 34 (University of California, Santa Cruz, Santa Cruz, Calif., 2002).

T. S. Mast, J. E. Nelson, “The fabrication of large optical surfaces using a combination of polishing and mirror bending,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 670–681 (1990).
[CrossRef]

J. E. Nelson, J. Lubliner, T. S. Mast, “Telescope mirror supports: plate deflections on point supports,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 212–228 (1982).
[CrossRef]

T. S. Mast, J. E. Nelson, G. E. Sommargren, “Primary mirror segment fabrication for CELT,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 43–58 (2000).
[CrossRef]

J. E. Nelson, T. S. Mast, S. M. Faber, eds., “The design of the Keck Observatory and Telescope,” Keck Observatory Rep. 90 (Keck Observatory, Kamuela, Hawaii, 1985).

Noll, R. J.

Peng, C.

R. Angel, M. Lloyd-Hart, K. Hedge, R. Sarlot, C. Peng, “The 20/20 telescope: MCAO imaging at the individual and combined foci,” in Proceedings of ESO Conference on Beyond Conventional Adaptive Optics, R. Ragazzoni, S. Esposito, eds. (to be published).

Potoff, R. H.

S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 310–314 (1982).
[CrossRef]

Rakoczy, J. M.

J. M. Rakoczy, E. E. Montgomery, J. L. Lindner, “Recent enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed at MSFC,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation and Commissioning, T. A. Sebring, T. Anderson, eds., Proc. SPIE4004, 352–362 (2000).
[CrossRef]

Ramsey, L. W.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Ray, F. B.

V. L. Krabbendam, T. A. Sebring, F. B. Ray, J. R. Fowler, “Development and performance of Hobby-Eberly Telescope 11-m segmented mirror,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 436–445 (1998).
[CrossRef]

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Ricklefs, R. L.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Roddier, F.

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, Vol. 19, E. Wolf, ed. (North-Holland, Amsterdam, 1981), pp. 281–376.
[CrossRef]

Sage, J.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Sarlot, R.

R. Angel, M. Lloyd-Hart, K. Hedge, R. Sarlot, C. Peng, “The 20/20 telescope: MCAO imaging at the individual and combined foci,” in Proceedings of ESO Conference on Beyond Conventional Adaptive Optics, R. Ragazzoni, S. Esposito, eds. (to be published).

Sasian, J. M.

J. M. Sasian, “Four-mirror optical system for large telescopes,” Opt. Eng. 29, 1181–1185 (1990).
[CrossRef]

Sebring, T. A.

V. L. Krabbendam, T. A. Sebring, F. B. Ray, J. R. Fowler, “Development and performance of Hobby-Eberly Telescope 11-m segmented mirror,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 436–445 (1998).
[CrossRef]

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Sirko, E.

Sommargren, G. E.

T. S. Mast, J. E. Nelson, G. E. Sommargren, “Primary mirror segment fabrication for CELT,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 43–58 (2000).
[CrossRef]

Soneira, R. M.

J. N. Bachall, R. M. Soneira, “The distribution of stars to V = 16th magnitude near the north galactic pole: normalization, clustering properties, and counts in various bands,” Astrophys. J. 246, 122–135 (1981).
[CrossRef]

Song, D. J.

S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 310–314 (1982).
[CrossRef]

Song, D. Y.

D. Y. Song, H. A. Macleod, “Multilayer coatings for astronomical telescope mirrors,” in Southwest Conference on Optics, S. C. Stotlar, ed., Proc. SPIE540, 156–159 (1985).
[CrossRef]

Spiesman, W. J.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Steiner, M.

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

Thomas, N.

N. Thomas, J. Wolfe, “UV-shifted durable silver coating for astronomical mirrors,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 312–323 (2000).
[CrossRef]

Timoshenko, S.

S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 3.

Troy, M.

Van Milligen, F.

S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 310–314 (1982).
[CrossRef]

Wilson, R. N.

R. N. Wilson, B. Delabre, “New optical solutions for very large telescopes using a spherical primary,” Astron. Astrophys. 294, 322–338 (1995).

R. N. Wilson, Reflecting Telescope Optics II (Springer-Verlag, Berlin, Germany, 1999), Chap. 3.
[CrossRef]

Woinowsky-Krieger, S.

S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 3.

Wolfe, J.

N. Thomas, J. Wolfe, “UV-shifted durable silver coating for astronomical mirrors,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 312–323 (2000).
[CrossRef]

Appl. Opt. (3)

Astron. Astrophys. (1)

R. N. Wilson, B. Delabre, “New optical solutions for very large telescopes using a spherical primary,” Astron. Astrophys. 294, 322–338 (1995).

Astrophys. J. (1)

J. N. Bachall, R. M. Soneira, “The distribution of stars to V = 16th magnitude near the north galactic pole: normalization, clustering properties, and counts in various bands,” Astrophys. J. 246, 122–135 (1981).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Eng. (1)

J. M. Sasian, “Four-mirror optical system for large telescopes,” Opt. Eng. 29, 1181–1185 (1990).
[CrossRef]

Proc. IEEE (1)

P.-S. Kildal, L. A. Baker, T. Hagfors, “The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system,” Proc. IEEE 82, 714–724 (1994).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

M. Lloyd-Hart, “Thermal performance enhancement of adaptive optics by use of a deformable secondary mirror,” Publ. Astron. Soc. Pac. 112, 264–272 (2000).
[CrossRef]

Other (21)

R. N. Wilson, Reflecting Telescope Optics II (Springer-Verlag, Berlin, Germany, 1999), Chap. 3.
[CrossRef]

M. Ealey, “Actuators: design fundamentals, key performance specifications, and parametric trades,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 346–362 (1991).
[CrossRef]

S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 3.

T. S. Mast, J. E. Nelson, G. E. Sommargren, “Primary mirror segment fabrication for CELT,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 43–58 (2000).
[CrossRef]

T. S. Mast, J. E. Nelson, “The fabrication of large optical surfaces using a combination of polishing and mirror bending,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 670–681 (1990).
[CrossRef]

J. E. Nelson, J. Lubliner, T. S. Mast, “Telescope mirror supports: plate deflections on point supports,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 212–228 (1982).
[CrossRef]

J. E. Nelson, T. S. Mast, eds., “Conceptual design for a thirty-meter telescope,” CELT Rep. 34 (University of California, Santa Cruz, Santa Cruz, Calif., 2002).

R. Angel, M. Lloyd-Hart, K. Hedge, R. Sarlot, C. Peng, “The 20/20 telescope: MCAO imaging at the individual and combined foci,” in Proceedings of ESO Conference on Beyond Conventional Adaptive Optics, R. Ragazzoni, S. Esposito, eds. (to be published).

A. D. Gleckler, D. J. Markason, G. H. Ames, “PAMELA: control of a segmented mirror via wavefront tilt and segment piston sensing,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 176–189 (1991).
[CrossRef]

S. C. Fawcett, “Development of adaptive optical segments with integrated wave front sensing,” in Active and Adaptive Optical Components and Systems II, M. A. Ealey, ed., Proc. SPIE1920, 193–199 (1993).
[CrossRef]

J. M. Rakoczy, E. E. Montgomery, J. L. Lindner, “Recent enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed at MSFC,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation and Commissioning, T. A. Sebring, T. Anderson, eds., Proc. SPIE4004, 352–362 (2000).
[CrossRef]

J. E. Nelson, T. S. Mast, S. M. Faber, eds., “The design of the Keck Observatory and Telescope,” Keck Observatory Rep. 90 (Keck Observatory, Kamuela, Hawaii, 1985).

V. L. Krabbendam, T. A. Sebring, F. B. Ray, J. R. Fowler, “Development and performance of Hobby-Eberly Telescope 11-m segmented mirror,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 436–445 (1998).
[CrossRef]

L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998).
[CrossRef]

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, Vol. 19, E. Wolf, ed. (North-Holland, Amsterdam, 1981), pp. 281–376.
[CrossRef]

J. B. Hindle, “Floatation systems,” in Amateur Telescope Making, A. G. Ingalls, ed., (Munn, 1947), pp. 229–234.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998), Chap. 6.

F. Roddier, ed., Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, UK, 1999), Chap. 3.
[CrossRef]

N. Thomas, J. Wolfe, “UV-shifted durable silver coating for astronomical mirrors,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 312–323 (2000).
[CrossRef]

S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 310–314 (1982).
[CrossRef]

D. Y. Song, H. A. Macleod, “Multilayer coatings for astronomical telescope mirrors,” in Southwest Conference on Optics, S. C. Stotlar, ed., Proc. SPIE540, 156–159 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fundamental frequencies for several 30-m-diameter box-style floating mirror plates made of steel. The results are from a finite-element model with rectangular plates for the cell walls and triangular plates for the front and back face sheets. For a mirror plate without face sheets, K 1wt 1 3/l and m 1wt 1/l, where K 1 and m 1 are the stiffness and mass of the mirror plate; hence the fundamental frequency f 1 ∼ (1/2π)(K 1/m 1)1/2t 1 is independent of w and l. The small increase in f 1 with l in the finite-element model is the result of use of single ideal plates for the cell surfaces.

Fig. 2
Fig. 2

Nine-point warping harness. This provides a radius of curvature adjustment and a variable-orientation astigmatic warp. The warping spring is clamped to the center of the back of the segment, and the spring arms engage slotted nuts on studs attached to the segment. The slotted nuts are adjusted to set the required figure. If the warping spring is made of steel and the segment is made of glass, a change in temperature will cause a surface error ∼ξtemp (see Section 3). This effect could be reduced if the warping spring is made from a fiber-reinforced composite with a low thermal-expansion coefficient.

Fig. 3
Fig. 3

Finite-element analysis of a 100-mm-diameter, 5-mm-thick hexagonal glass segment in a four-point astigmatic warping harness. The mechanical properties of the segment material are given in Table 1. The small black dots show the deflection of 2400 points across the segment surface, and the large black dots show the residuals (51.8-nm p.-p.) after we fit z = -0.4 - 8.0(2r 2 - 1) + 283.0r 2 cos(2θ) nm. For a 100-mm-diameter segment at the edge of a 30-m f/1.5 paraboloid, z astig= 190r 2 cos(2θ) nm [approximation (1)]. This requires 0.67 N at each point in the warping harness, and the residual surface profile error is 34.8-nm p.-p., i.e., d astig = 1.39 × 10-5 R 2 (d astig and R are in meters).

Fig. 4
Fig. 4

Surface error contributions for a 5-mm-thick glass segment at the edge of a 30-m f/1.5 paraboloid. d fig [approximation (3)] is the segment figure error, when we assume 0.1% error in the radius of curvature, 10% amplitude or 3° orientation error in astigmatism, and 25-nm p.-p. high-order errors; d grav [approximation (4)] is the gravitational deformation of the segment on a three-point support; d warp [quadrature sum of approximations (5) and (6)] is the support print-through when the segment is warped to change the radius of curvature by 0.50% and compensate astigmatism; d act is the segment position error that is due to hysteresis in the segment actuators (1% of a 2-μm step); and d tot is the quadrature sum of all the error contributions. The horizontal line at 75-nm p.-p. surface error corresponds to a 30-nm rms wave-front error.

Fig. 5
Fig. 5

Segment radius as a function of thickness for a 75-nm p.-p. total surface error.

Fig. 6
Fig. 6

Surface error that is due to support-point torques for a 100-mm-diameter, 5-mm-thick glass segment on 0.5-mm-diameter steel rod flexures attached to a steel mount. Mechanical properties of the segment and flexure materials are given in Table 1. ξgrav [approximation (7)] is the segment deformation that is due to gravitational deflection of the flexures when the telescope is at the horizon; ξact [approximation (8)] is the deformation that is due to bending of the flexures when just one actuator is fully extended; ξtemp [approximation (9)] is the deformation that is due to the flexures bending because of a 5 K temperature change; and ξtot is the quadrature sum of the surface error contributions. The cross and circle are finite-element analysis results for ξgrav and ξact. ξtemp could be reduced substantially if the segment mount was made from a composite material with a low thermal-expansion coefficient.

Fig. 7
Fig. 7

Wave-front sensor subaperture and detector configuration. The bold hexagons are mirror segments, the circles are wave-front sensor subapertures (1 + 6/2 per segment), and the rectangles represent the assignment of detector pixels to subapertures (four pixels per subaperture if there are no guard bands).

Tables (1)

Tables Icon

Table 1 Material Properties

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

zr, θzfocus+zastig+zcoma 2r2-1R24k1+ bR2ζ24k13+r2cos 2θ×bR2ζ24k13+3r2-2rcos θbR3ζ6k13,
zsr, θ=2r2-1R24k+ R416k3+ R632k5++rτ cos θ,
dfig0.1bR2ζ2/2k132+10-3R2/2k2+25 nm21/2.
dgrav0.003 mgπR2D=0.036 R4t2π2gρ1-ν2E,
dfocus0.003 R22kΔkk1+ν5+ν64π2.
dastig0.001 |b|R2ζ24k131+ν5+ν64π2.
ξgrav 2FgravR23+ν16π1+νD= 2R3ρgh3+ν1-ν2Et22-1,
ξact 3sEfd43+ν1-ν32Et3h2-1.
ξtemp 27R2Efd4αΔT3+ν1-ν128Et3h22-2.

Metrics