Abstract

Ni80Nb20-MgO multilayers with d spacing that varies from 2.50 to 3.07 nm were prepared by pulsed laser deposition under conditions of ultrahigh vacuum (UHV) and argon. The morphological and atomic structure in the multilayers was determined by hard-x-ray scattering. It was found that the interface roughness in both cases, UHV and argon deposition, is <0.4 nm, whereas the lateral and longitudinal correlation lengths in the case of argon deposition, 5.0 and 1.0 nm, respectively, are an order of magnitude lower. This is due to a reduction in kinetic energy of the condensing species in argon by orders of magnitude due to multiple collisions, which reduces the lateral relaxation probability. Hence the soft-x-ray reflectance of [Ni80Nb20-MgO]10 multilayers deposited in argon was determined at 413 eV (3.00 nm), middle of the water window. The reflectance has a peak at ∼35.2° with a half-width of 3.5° and 0.19% maximum value. These results agree well with the simulation results performed by use of the structural parameters obtained from hard-x-ray scattering. The atomic structure determined by high-angle x-ray diffraction shows that both Ni80Nb20 and MgO are amorphous in the as-deposited condition.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
    [CrossRef] [PubMed]
  2. S. Vitta, T. H. Metzger, J. Peisl, “Structure and normal incidence soft-x-ray reflectivity of Ni-Nb/C amorphous multilayers,” Appl. Opt. 36, 1472–1481 (1997).
    [CrossRef] [PubMed]
  3. S. Vitta, P. Yang, “Thermal stability of 2.4 nm period Ni-Nb/C multilayer x-ray mirror,” Appl. Phys. Lett. 77, 3654–3656 (2000).
    [CrossRef]
  4. N. N. Salashchenko, E. A. Shamov, “Short period x-ray multilayers based on Cr/Sc,” Opt. Commun. 134, 7–10 (1997).
    [CrossRef]
  5. F. Schafers, M. Mertin, D. Abramsohn, A. Gaupp, H.-Ch. Mertins, N. N. Salashchenko, “Cr/Sc nanolayers for the water window: improved performance,” Nucl. Instrum. Methods Phys. Res. A 467–468, 349–353 (2001).
    [CrossRef]
  6. T. B. Massalski, ed., Binary Alloy Phase Diagrams (American Society of Metals, Materials Park, Ohio, 1986).
  7. S. Vitta, “The limits of glass formation by pulsed laser quenching,” Scr. Metall. Mater. 25, 2209–2214 (1991).
    [CrossRef]
  8. X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
    [CrossRef]
  9. Data are available at http://www-cxro.lbl.gov .
  10. D. L. Windt, “IMD—software for modeling the optical properties of multilayers,” Comput. Phys. 12, 360–370 (1998).
    [CrossRef]
  11. S. Vitta, M. Weisheit, T. Scharf, H.-U. Krebs, “Alloy-ceramic oxide multilayer mirrors for water-window soft x rays,” Opt. Lett. 26, 1448–1459 (2001).
    [CrossRef]
  12. H.-U. Krebs, “Characteristic properties of laser deposited metallic systems,” Int. J. Non-Equilibrium Process. 10, 3–25 (1997).
  13. L. Nevot, P. Croce, “Characterisation des surfaces par reflexion rasante de rayons X,” Rev. Phys. Appl. 15, 761–779 (1980).
    [CrossRef]
  14. K.-H. Mueller, “Dependence of thin-film microstructure on deposition rate by means of a computer simulation,” J. Appl. Phys. 58, 2573–2576 (1985).
    [CrossRef]
  15. S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B 38, 2297–2311 (1988).
    [CrossRef]
  16. T. Salditt, T. H. Metzger, Ch. Brandt, U. Klemradt, J. Peisl, “Determination of the static scaling exponent of self-affine interfaces by nonspecular x-ray scattering,” Phys. Rev. B 51, 5617–5627 (1995).
    [CrossRef]
  17. A.-L. Barabasi, H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge U. Press, Cambridge, England, 1995).
  18. Y. Nakata, J. Muramoto, T. Okada, M. Maeda, “Particle dynamics during nanoparticle synthesis by laser ablation in a background gas,” J. Appl. Phys. 91, 1640–1643 (2002).
    [CrossRef]

2002 (2)

X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
[CrossRef]

Y. Nakata, J. Muramoto, T. Okada, M. Maeda, “Particle dynamics during nanoparticle synthesis by laser ablation in a background gas,” J. Appl. Phys. 91, 1640–1643 (2002).
[CrossRef]

2001 (2)

S. Vitta, M. Weisheit, T. Scharf, H.-U. Krebs, “Alloy-ceramic oxide multilayer mirrors for water-window soft x rays,” Opt. Lett. 26, 1448–1459 (2001).
[CrossRef]

F. Schafers, M. Mertin, D. Abramsohn, A. Gaupp, H.-Ch. Mertins, N. N. Salashchenko, “Cr/Sc nanolayers for the water window: improved performance,” Nucl. Instrum. Methods Phys. Res. A 467–468, 349–353 (2001).
[CrossRef]

2000 (1)

S. Vitta, P. Yang, “Thermal stability of 2.4 nm period Ni-Nb/C multilayer x-ray mirror,” Appl. Phys. Lett. 77, 3654–3656 (2000).
[CrossRef]

1998 (1)

D. L. Windt, “IMD—software for modeling the optical properties of multilayers,” Comput. Phys. 12, 360–370 (1998).
[CrossRef]

1997 (3)

H.-U. Krebs, “Characteristic properties of laser deposited metallic systems,” Int. J. Non-Equilibrium Process. 10, 3–25 (1997).

N. N. Salashchenko, E. A. Shamov, “Short period x-ray multilayers based on Cr/Sc,” Opt. Commun. 134, 7–10 (1997).
[CrossRef]

S. Vitta, T. H. Metzger, J. Peisl, “Structure and normal incidence soft-x-ray reflectivity of Ni-Nb/C amorphous multilayers,” Appl. Opt. 36, 1472–1481 (1997).
[CrossRef] [PubMed]

1995 (2)

T. Salditt, T. H. Metzger, Ch. Brandt, U. Klemradt, J. Peisl, “Determination of the static scaling exponent of self-affine interfaces by nonspecular x-ray scattering,” Phys. Rev. B 51, 5617–5627 (1995).
[CrossRef]

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

1991 (1)

S. Vitta, “The limits of glass formation by pulsed laser quenching,” Scr. Metall. Mater. 25, 2209–2214 (1991).
[CrossRef]

1988 (1)

S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B 38, 2297–2311 (1988).
[CrossRef]

1985 (1)

K.-H. Mueller, “Dependence of thin-film microstructure on deposition rate by means of a computer simulation,” J. Appl. Phys. 58, 2573–2576 (1985).
[CrossRef]

1980 (1)

L. Nevot, P. Croce, “Characterisation des surfaces par reflexion rasante de rayons X,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Abramsohn, D.

F. Schafers, M. Mertin, D. Abramsohn, A. Gaupp, H.-Ch. Mertins, N. N. Salashchenko, “Cr/Sc nanolayers for the water window: improved performance,” Nucl. Instrum. Methods Phys. Res. A 467–468, 349–353 (2001).
[CrossRef]

Barabasi, A.-L.

A.-L. Barabasi, H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge U. Press, Cambridge, England, 1995).

Brandt, Ch.

T. Salditt, T. H. Metzger, Ch. Brandt, U. Klemradt, J. Peisl, “Determination of the static scaling exponent of self-affine interfaces by nonspecular x-ray scattering,” Phys. Rev. B 51, 5617–5627 (1995).
[CrossRef]

Chen, X. Y.

X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
[CrossRef]

Croce, P.

L. Nevot, P. Croce, “Characterisation des surfaces par reflexion rasante de rayons X,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Garoff, S.

S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B 38, 2297–2311 (1988).
[CrossRef]

Gaupp, A.

F. Schafers, M. Mertin, D. Abramsohn, A. Gaupp, H.-Ch. Mertins, N. N. Salashchenko, “Cr/Sc nanolayers for the water window: improved performance,” Nucl. Instrum. Methods Phys. Res. A 467–468, 349–353 (2001).
[CrossRef]

Howells, M.

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

Jacobsen, C.

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

Kirz, J.

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

Klemradt, U.

T. Salditt, T. H. Metzger, Ch. Brandt, U. Klemradt, J. Peisl, “Determination of the static scaling exponent of self-affine interfaces by nonspecular x-ray scattering,” Phys. Rev. B 51, 5617–5627 (1995).
[CrossRef]

Krebs, H.-U.

S. Vitta, M. Weisheit, T. Scharf, H.-U. Krebs, “Alloy-ceramic oxide multilayer mirrors for water-window soft x rays,” Opt. Lett. 26, 1448–1459 (2001).
[CrossRef]

H.-U. Krebs, “Characteristic properties of laser deposited metallic systems,” Int. J. Non-Equilibrium Process. 10, 3–25 (1997).

Liu, L. M.

X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
[CrossRef]

Liu, Z. G.

X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
[CrossRef]

Maeda, M.

Y. Nakata, J. Muramoto, T. Okada, M. Maeda, “Particle dynamics during nanoparticle synthesis by laser ablation in a background gas,” J. Appl. Phys. 91, 1640–1643 (2002).
[CrossRef]

Mak, C. L.

X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
[CrossRef]

Mertin, M.

F. Schafers, M. Mertin, D. Abramsohn, A. Gaupp, H.-Ch. Mertins, N. N. Salashchenko, “Cr/Sc nanolayers for the water window: improved performance,” Nucl. Instrum. Methods Phys. Res. A 467–468, 349–353 (2001).
[CrossRef]

Mertins, H.-Ch.

F. Schafers, M. Mertin, D. Abramsohn, A. Gaupp, H.-Ch. Mertins, N. N. Salashchenko, “Cr/Sc nanolayers for the water window: improved performance,” Nucl. Instrum. Methods Phys. Res. A 467–468, 349–353 (2001).
[CrossRef]

Metzger, T. H.

S. Vitta, T. H. Metzger, J. Peisl, “Structure and normal incidence soft-x-ray reflectivity of Ni-Nb/C amorphous multilayers,” Appl. Opt. 36, 1472–1481 (1997).
[CrossRef] [PubMed]

T. Salditt, T. H. Metzger, Ch. Brandt, U. Klemradt, J. Peisl, “Determination of the static scaling exponent of self-affine interfaces by nonspecular x-ray scattering,” Phys. Rev. B 51, 5617–5627 (1995).
[CrossRef]

Mueller, K.-H.

K.-H. Mueller, “Dependence of thin-film microstructure on deposition rate by means of a computer simulation,” J. Appl. Phys. 58, 2573–2576 (1985).
[CrossRef]

Muramoto, J.

Y. Nakata, J. Muramoto, T. Okada, M. Maeda, “Particle dynamics during nanoparticle synthesis by laser ablation in a background gas,” J. Appl. Phys. 91, 1640–1643 (2002).
[CrossRef]

Nakata, Y.

Y. Nakata, J. Muramoto, T. Okada, M. Maeda, “Particle dynamics during nanoparticle synthesis by laser ablation in a background gas,” J. Appl. Phys. 91, 1640–1643 (2002).
[CrossRef]

Nevot, L.

L. Nevot, P. Croce, “Characterisation des surfaces par reflexion rasante de rayons X,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Okada, T.

Y. Nakata, J. Muramoto, T. Okada, M. Maeda, “Particle dynamics during nanoparticle synthesis by laser ablation in a background gas,” J. Appl. Phys. 91, 1640–1643 (2002).
[CrossRef]

Peisl, J.

S. Vitta, T. H. Metzger, J. Peisl, “Structure and normal incidence soft-x-ray reflectivity of Ni-Nb/C amorphous multilayers,” Appl. Opt. 36, 1472–1481 (1997).
[CrossRef] [PubMed]

T. Salditt, T. H. Metzger, Ch. Brandt, U. Klemradt, J. Peisl, “Determination of the static scaling exponent of self-affine interfaces by nonspecular x-ray scattering,” Phys. Rev. B 51, 5617–5627 (1995).
[CrossRef]

Salashchenko, N. N.

F. Schafers, M. Mertin, D. Abramsohn, A. Gaupp, H.-Ch. Mertins, N. N. Salashchenko, “Cr/Sc nanolayers for the water window: improved performance,” Nucl. Instrum. Methods Phys. Res. A 467–468, 349–353 (2001).
[CrossRef]

N. N. Salashchenko, E. A. Shamov, “Short period x-ray multilayers based on Cr/Sc,” Opt. Commun. 134, 7–10 (1997).
[CrossRef]

Salditt, T.

T. Salditt, T. H. Metzger, Ch. Brandt, U. Klemradt, J. Peisl, “Determination of the static scaling exponent of self-affine interfaces by nonspecular x-ray scattering,” Phys. Rev. B 51, 5617–5627 (1995).
[CrossRef]

Schafers, F.

F. Schafers, M. Mertin, D. Abramsohn, A. Gaupp, H.-Ch. Mertins, N. N. Salashchenko, “Cr/Sc nanolayers for the water window: improved performance,” Nucl. Instrum. Methods Phys. Res. A 467–468, 349–353 (2001).
[CrossRef]

Scharf, T.

Shamov, E. A.

N. N. Salashchenko, E. A. Shamov, “Short period x-ray multilayers based on Cr/Sc,” Opt. Commun. 134, 7–10 (1997).
[CrossRef]

Sinha, S. K.

S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B 38, 2297–2311 (1988).
[CrossRef]

Sirota, E. B.

S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B 38, 2297–2311 (1988).
[CrossRef]

Stanley, H. B.

S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B 38, 2297–2311 (1988).
[CrossRef]

Stanley, H. E.

A.-L. Barabasi, H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge U. Press, Cambridge, England, 1995).

Vitta, S.

S. Vitta, M. Weisheit, T. Scharf, H.-U. Krebs, “Alloy-ceramic oxide multilayer mirrors for water-window soft x rays,” Opt. Lett. 26, 1448–1459 (2001).
[CrossRef]

S. Vitta, P. Yang, “Thermal stability of 2.4 nm period Ni-Nb/C multilayer x-ray mirror,” Appl. Phys. Lett. 77, 3654–3656 (2000).
[CrossRef]

S. Vitta, T. H. Metzger, J. Peisl, “Structure and normal incidence soft-x-ray reflectivity of Ni-Nb/C amorphous multilayers,” Appl. Opt. 36, 1472–1481 (1997).
[CrossRef] [PubMed]

S. Vitta, “The limits of glass formation by pulsed laser quenching,” Scr. Metall. Mater. 25, 2209–2214 (1991).
[CrossRef]

Wang, M.

X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
[CrossRef]

Weisheit, M.

Windt, D. L.

D. L. Windt, “IMD—software for modeling the optical properties of multilayers,” Comput. Phys. 12, 360–370 (1998).
[CrossRef]

Wong, K. H.

X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
[CrossRef]

Yang, P.

S. Vitta, P. Yang, “Thermal stability of 2.4 nm period Ni-Nb/C multilayer x-ray mirror,” Appl. Phys. Lett. 77, 3654–3656 (2000).
[CrossRef]

Yin, X. B.

X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Vitta, P. Yang, “Thermal stability of 2.4 nm period Ni-Nb/C multilayer x-ray mirror,” Appl. Phys. Lett. 77, 3654–3656 (2000).
[CrossRef]

Comput. Phys. (1)

D. L. Windt, “IMD—software for modeling the optical properties of multilayers,” Comput. Phys. 12, 360–370 (1998).
[CrossRef]

Int. J. Non-Equilibrium Process. (1)

H.-U. Krebs, “Characteristic properties of laser deposited metallic systems,” Int. J. Non-Equilibrium Process. 10, 3–25 (1997).

J. Appl. Phys. (3)

X. Y. Chen, K. H. Wong, C. L. Mak, X. B. Yin, M. Wang, L. M. Liu, Z. G. Liu, “Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition,” J. Appl. Phys. 91, 5728–5734 (2002).
[CrossRef]

Y. Nakata, J. Muramoto, T. Okada, M. Maeda, “Particle dynamics during nanoparticle synthesis by laser ablation in a background gas,” J. Appl. Phys. 91, 1640–1643 (2002).
[CrossRef]

K.-H. Mueller, “Dependence of thin-film microstructure on deposition rate by means of a computer simulation,” J. Appl. Phys. 58, 2573–2576 (1985).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

F. Schafers, M. Mertin, D. Abramsohn, A. Gaupp, H.-Ch. Mertins, N. N. Salashchenko, “Cr/Sc nanolayers for the water window: improved performance,” Nucl. Instrum. Methods Phys. Res. A 467–468, 349–353 (2001).
[CrossRef]

Opt. Commun. (1)

N. N. Salashchenko, E. A. Shamov, “Short period x-ray multilayers based on Cr/Sc,” Opt. Commun. 134, 7–10 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B 38, 2297–2311 (1988).
[CrossRef]

T. Salditt, T. H. Metzger, Ch. Brandt, U. Klemradt, J. Peisl, “Determination of the static scaling exponent of self-affine interfaces by nonspecular x-ray scattering,” Phys. Rev. B 51, 5617–5627 (1995).
[CrossRef]

Q. Rev. Biophys. (1)

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

Rev. Phys. Appl. (1)

L. Nevot, P. Croce, “Characterisation des surfaces par reflexion rasante de rayons X,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Scr. Metall. Mater. (1)

S. Vitta, “The limits of glass formation by pulsed laser quenching,” Scr. Metall. Mater. 25, 2209–2214 (1991).
[CrossRef]

Other (3)

Data are available at http://www-cxro.lbl.gov .

T. B. Massalski, ed., Binary Alloy Phase Diagrams (American Society of Metals, Materials Park, Ohio, 1986).

A.-L. Barabasi, H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge U. Press, Cambridge, England, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics