Abstract

We investigated the effect of an applied electric field on the Bragg condition of degenerate four-wave mixing in a polymeric photorefractive material with a low glass-transition temperature. For a polymeric photorefractive material the application of an external electric field as is necessary for photorefractivity leads to birefringence of the material by poling of the nonlinear optical chromophore. Because the propagation vectors of the pumping and reading beams inside the material are influenced by the refractive index of the material, the Bragg condition depends on the magnitude of the external field. Using an oriented gas model and the-coupled-mode theory, we numerically analyzed the Bragg-mismatch effect that causes a reduction in diffraction efficiency as a function of an external field. We present the boundary conditions for sample thickness and grating spacing for which the Bragg-mismatch effect must be taken into account.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Meerholz, B. L. Volodin, Sandalphon, B. Lippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
    [CrossRef]
  2. A Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
    [CrossRef]
  3. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, New York, 1993).
  4. J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
    [CrossRef]
  5. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
    [CrossRef]
  6. P. Yeh, “Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research,” Appl. Opt. 26, 602–604 (1987).
    [CrossRef] [PubMed]
  7. K. Khand, D. J. Binks, D. P. West, “Effect of field-dependent photogeneration on holographic contrast in photorefractive polymers,” J. Appl. Phys. 89, 2516–2519 (2001).
    [CrossRef]
  8. J. S. Schildkraut, A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888–1893 (1992).
    [CrossRef]
  9. I. A. Taj, P. Xie, T. Mishima, “Fast switching of photorefractive output by applied electric field,” Opt. Commun. 189, 7–15 (2001).
    [CrossRef]
  10. E. Chuang, D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt 36, 8445–8454 (1997).
    [CrossRef]
  11. H. Kogelink, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  12. K. Nonaka, “Off-Bragg analysis of the diffraction efficiency of transmission photorefractive hologram,” Appl. Opt. 36, 4792–4800 (1997).
    [CrossRef] [PubMed]
  13. S. Tao, Z. H. Song, D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe: LiNbO3 crystals,” Opt. Commun. 108, 144–152 (1994).
    [CrossRef]
  14. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley Interscience, New York, 1991), Chap. 1.
    [CrossRef]
  15. H. S. Nalwa, S. Miyata, eds., Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, Fla.1997), p. 465.
  16. H. Chun, I. K. Moon, D. H. Shin, N. Kim, “Preparation of highly efficient polymeric photorefractive composite containing isophorone-based NLO chromophore,” Chem. Mater. 13, 2816–2817 (2001).
    [CrossRef]
  17. W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, N. Kim, C.-H. Oh, “Determination of the space-charge field in polymeric photorefractive material,” J. Appl. Phys. 91, 6471–6475 (2002).
    [CrossRef]
  18. W.-J. Joo, H.-D. Shin, C.-H. Oh, S.-H. Song, B.-S. Ko, Y.-K. Han, “Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic ester) containing p-cyanoazobenzene,” J. Chem. Phys. 113, 8848–8851 (2000).
    [CrossRef]
  19. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, New York, 1993), Chaps. 2 and 3.

2002 (1)

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, N. Kim, C.-H. Oh, “Determination of the space-charge field in polymeric photorefractive material,” J. Appl. Phys. 91, 6471–6475 (2002).
[CrossRef]

2001 (3)

H. Chun, I. K. Moon, D. H. Shin, N. Kim, “Preparation of highly efficient polymeric photorefractive composite containing isophorone-based NLO chromophore,” Chem. Mater. 13, 2816–2817 (2001).
[CrossRef]

K. Khand, D. J. Binks, D. P. West, “Effect of field-dependent photogeneration on holographic contrast in photorefractive polymers,” J. Appl. Phys. 89, 2516–2519 (2001).
[CrossRef]

I. A. Taj, P. Xie, T. Mishima, “Fast switching of photorefractive output by applied electric field,” Opt. Commun. 189, 7–15 (2001).
[CrossRef]

2000 (1)

W.-J. Joo, H.-D. Shin, C.-H. Oh, S.-H. Song, B.-S. Ko, Y.-K. Han, “Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic ester) containing p-cyanoazobenzene,” J. Chem. Phys. 113, 8848–8851 (2000).
[CrossRef]

1999 (1)

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

1998 (1)

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

1997 (3)

A Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

E. Chuang, D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt 36, 8445–8454 (1997).
[CrossRef]

K. Nonaka, “Off-Bragg analysis of the diffraction efficiency of transmission photorefractive hologram,” Appl. Opt. 36, 4792–4800 (1997).
[CrossRef] [PubMed]

1994 (2)

S. Tao, Z. H. Song, D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe: LiNbO3 crystals,” Opt. Commun. 108, 144–152 (1994).
[CrossRef]

L. Meerholz, B. L. Volodin, Sandalphon, B. Lippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

1992 (1)

J. S. Schildkraut, A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888–1893 (1992).
[CrossRef]

1987 (1)

1969 (1)

H. Kogelink, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Binks, D. J.

K. Khand, D. J. Binks, D. P. West, “Effect of field-dependent photogeneration on holographic contrast in photorefractive polymers,” J. Appl. Phys. 89, 2516–2519 (2001).
[CrossRef]

Buettner, A. V.

J. S. Schildkraut, A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888–1893 (1992).
[CrossRef]

Casperson, J. D.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Chuang, E.

E. Chuang, D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt 36, 8445–8454 (1997).
[CrossRef]

Chun, H.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, N. Kim, C.-H. Oh, “Determination of the space-charge field in polymeric photorefractive material,” J. Appl. Phys. 91, 6471–6475 (2002).
[CrossRef]

H. Chun, I. K. Moon, D. H. Shin, N. Kim, “Preparation of highly efficient polymeric photorefractive composite containing isophorone-based NLO chromophore,” Chem. Mater. 13, 2816–2817 (2001).
[CrossRef]

DeClue, M.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Diaz-Garcia, M. A.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Ferrio, K. B.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Grunnet-Jepsen, A

A Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Guenther, B. D.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Han, Y.-K.

W.-J. Joo, H.-D. Shin, C.-H. Oh, S.-H. Song, B.-S. Ko, Y.-K. Han, “Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic ester) containing p-cyanoazobenzene,” J. Chem. Phys. 113, 8848–8851 (2000).
[CrossRef]

Hendrickx, E.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Herlocker, J. A.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Joo, W.-J.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, N. Kim, C.-H. Oh, “Determination of the space-charge field in polymeric photorefractive material,” J. Appl. Phys. 91, 6471–6475 (2002).
[CrossRef]

W.-J. Joo, H.-D. Shin, C.-H. Oh, S.-H. Song, B.-S. Ko, Y.-K. Han, “Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic ester) containing p-cyanoazobenzene,” J. Chem. Phys. 113, 8848–8851 (2000).
[CrossRef]

Khand, K.

K. Khand, D. J. Binks, D. P. West, “Effect of field-dependent photogeneration on holographic contrast in photorefractive polymers,” J. Appl. Phys. 89, 2516–2519 (2001).
[CrossRef]

Kim, N.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, N. Kim, C.-H. Oh, “Determination of the space-charge field in polymeric photorefractive material,” J. Appl. Phys. 91, 6471–6475 (2002).
[CrossRef]

H. Chun, I. K. Moon, D. H. Shin, N. Kim, “Preparation of highly efficient polymeric photorefractive composite containing isophorone-based NLO chromophore,” Chem. Mater. 13, 2816–2817 (2001).
[CrossRef]

Kim, N.-J.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, N. Kim, C.-H. Oh, “Determination of the space-charge field in polymeric photorefractive material,” J. Appl. Phys. 91, 6471–6475 (2002).
[CrossRef]

Kippelen, B.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Ko, B.-S.

W.-J. Joo, H.-D. Shin, C.-H. Oh, S.-H. Song, B.-S. Ko, Y.-K. Han, “Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic ester) containing p-cyanoazobenzene,” J. Chem. Phys. 113, 8848–8851 (2000).
[CrossRef]

Kogelink, H.

H. Kogelink, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Lippelen, B.

L. Meerholz, B. L. Volodin, Sandalphon, B. Lippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

Meerholz, L.

L. Meerholz, B. L. Volodin, Sandalphon, B. Lippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

Mery, S.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Mishima, T.

I. A. Taj, P. Xie, T. Mishima, “Fast switching of photorefractive output by applied electric field,” Opt. Commun. 189, 7–15 (2001).
[CrossRef]

Moerner, W. E.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

A Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Moon, I. K.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, N. Kim, C.-H. Oh, “Determination of the space-charge field in polymeric photorefractive material,” J. Appl. Phys. 91, 6471–6475 (2002).
[CrossRef]

H. Chun, I. K. Moon, D. H. Shin, N. Kim, “Preparation of highly efficient polymeric photorefractive composite containing isophorone-based NLO chromophore,” Chem. Mater. 13, 2816–2817 (2001).
[CrossRef]

Nonaka, K.

Oh, C.-H.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, N. Kim, C.-H. Oh, “Determination of the space-charge field in polymeric photorefractive material,” J. Appl. Phys. 91, 6471–6475 (2002).
[CrossRef]

W.-J. Joo, H.-D. Shin, C.-H. Oh, S.-H. Song, B.-S. Ko, Y.-K. Han, “Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic ester) containing p-cyanoazobenzene,” J. Chem. Phys. 113, 8848–8851 (2000).
[CrossRef]

Peyghambarian, N.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

L. Meerholz, B. L. Volodin, Sandalphon, B. Lippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

Psaltis, D.

E. Chuang, D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt 36, 8445–8454 (1997).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley Interscience, New York, 1991), Chap. 1.
[CrossRef]

Sandalphon,

L. Meerholz, B. L. Volodin, Sandalphon, B. Lippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

Schildkraut, J. S.

J. S. Schildkraut, A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888–1893 (1992).
[CrossRef]

Selviah, D. R.

S. Tao, Z. H. Song, D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe: LiNbO3 crystals,” Opt. Commun. 108, 144–152 (1994).
[CrossRef]

Shin, D. H.

H. Chun, I. K. Moon, D. H. Shin, N. Kim, “Preparation of highly efficient polymeric photorefractive composite containing isophorone-based NLO chromophore,” Chem. Mater. 13, 2816–2817 (2001).
[CrossRef]

Shin, H.-D.

W.-J. Joo, H.-D. Shin, C.-H. Oh, S.-H. Song, B.-S. Ko, Y.-K. Han, “Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic ester) containing p-cyanoazobenzene,” J. Chem. Phys. 113, 8848–8851 (2000).
[CrossRef]

Song, S.-H.

W.-J. Joo, H.-D. Shin, C.-H. Oh, S.-H. Song, B.-S. Ko, Y.-K. Han, “Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic ester) containing p-cyanoazobenzene,” J. Chem. Phys. 113, 8848–8851 (2000).
[CrossRef]

Song, Z. H.

S. Tao, Z. H. Song, D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe: LiNbO3 crystals,” Opt. Commun. 108, 144–152 (1994).
[CrossRef]

Taj, I. A.

I. A. Taj, P. Xie, T. Mishima, “Fast switching of photorefractive output by applied electric field,” Opt. Commun. 189, 7–15 (2001).
[CrossRef]

Tao, S.

S. Tao, Z. H. Song, D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe: LiNbO3 crystals,” Opt. Commun. 108, 144–152 (1994).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley Interscience, New York, 1991), Chap. 1.
[CrossRef]

Thompson, C. L.

A Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Twieg, R. J.

A Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Volodin, B. L.

L. Meerholz, B. L. Volodin, Sandalphon, B. Lippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

West, D. P.

K. Khand, D. J. Binks, D. P. West, “Effect of field-dependent photogeneration on holographic contrast in photorefractive polymers,” J. Appl. Phys. 89, 2516–2519 (2001).
[CrossRef]

Wright, D.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Xie, P.

I. A. Taj, P. Xie, T. Mishima, “Fast switching of photorefractive output by applied electric field,” Opt. Commun. 189, 7–15 (2001).
[CrossRef]

Yeh, P.

P. Yeh, “Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research,” Appl. Opt. 26, 602–604 (1987).
[CrossRef] [PubMed]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, New York, 1993).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, New York, 1993), Chaps. 2 and 3.

Appl. Opt (1)

E. Chuang, D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt 36, 8445–8454 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

A Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelink, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Chem. Mater. (1)

H. Chun, I. K. Moon, D. H. Shin, N. Kim, “Preparation of highly efficient polymeric photorefractive composite containing isophorone-based NLO chromophore,” Chem. Mater. 13, 2816–2817 (2001).
[CrossRef]

J. Appl. Phys. (3)

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, N. Kim, C.-H. Oh, “Determination of the space-charge field in polymeric photorefractive material,” J. Appl. Phys. 91, 6471–6475 (2002).
[CrossRef]

K. Khand, D. J. Binks, D. P. West, “Effect of field-dependent photogeneration on holographic contrast in photorefractive polymers,” J. Appl. Phys. 89, 2516–2519 (2001).
[CrossRef]

J. S. Schildkraut, A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888–1893 (1992).
[CrossRef]

J. Chem. Phys. (1)

W.-J. Joo, H.-D. Shin, C.-H. Oh, S.-H. Song, B.-S. Ko, Y.-K. Han, “Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic ester) containing p-cyanoazobenzene,” J. Chem. Phys. 113, 8848–8851 (2000).
[CrossRef]

Nature (1)

L. Meerholz, B. L. Volodin, Sandalphon, B. Lippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

Opt. Commun. (2)

S. Tao, Z. H. Song, D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe: LiNbO3 crystals,” Opt. Commun. 108, 144–152 (1994).
[CrossRef]

I. A. Taj, P. Xie, T. Mishima, “Fast switching of photorefractive output by applied electric field,” Opt. Commun. 189, 7–15 (2001).
[CrossRef]

Other (4)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, New York, 1993).

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley Interscience, New York, 1991), Chap. 1.
[CrossRef]

H. S. Nalwa, S. Miyata, eds., Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, Fla.1997), p. 465.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, New York, 1993), Chaps. 2 and 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagrams of (a) a Bragg match in DFWM in the presence of an external field and (b) a Bragg mismatch induced by increasing the external field. Δα, Bragg-mismatch factor; K, grating vector; k R,D,P1,P2, propagation vectors of the incident read beam, the diffracted read beam, and two incident pump beams, respectively.

Fig. 2
Fig. 2

Variation of refractive index of the photorefractive polymer as a function of external electric field relative to the electro-optic effect; n , n , parallel and perpendicular components, respectively, of the respectively index with respect to the electric field. Inset, transmittance measured at various external fields from the standard two-crossed-polarizers setup, which was fitted to the calculation result based on the oriented gas model.

Fig. 3
Fig. 3

Angular deviation (Δθ) of the read beam from the Bragg angle that arises from variation of the external electric field calculated (a) at three grating spacings and (b) at four bisector angles of pump beams with respect to the sample normal.

Fig. 4
Fig. 4

Angular deviation (Δθhalf) of the read beam from Bragg angle, which leads to a 50% reduction of the diffraction efficiency caused by the Bragg-mismatch effect as a function of (a) sample thickness and (b) coupling constant.

Fig. 5
Fig. 5

Boundary conditions of sample thickness and grating spacing at which the increase of the external field from 20 to 60 V/μm results in a 50% reduction of the diffraction efficiency. The bisector angles of the two pump beams were 40° and 50° with respect to the sample normal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η=sin2ν2+ξ21/2/1+ξ2/ν2, ξ=ΔθKdsinϕ-θo/2cs, ν=πn1d/λcS cR1/2, cR=cos θ cS=cos θ-K cosϕ/β,
Δnz= 2πN Fn Cα-αcos2 θ- 13,
Δnx=Δny=-Δnz/2,
cos2 θ= 0πcos2 θ exp-Uθ/kTsin θdθ0πexp-Uθ/kTsin θdθ,
Uθ=-μ·E-1/2p·E-μE cos θ.
T=sin2πne-nodλ,

Metrics