Abstract

We analyze and predict the performance of a fiber-optic temperature sensor from the measured fluorescence spectrum to optimize its design. We apply this analysis to an erbium-doped silica fiber by employing the power-ratio technique. We develop expressions for the signal-to-noise ratio in a band to optimize sensor performance in each spectral channel. We improve the signal-to-noise ratio by a factor of 5 for each channel, compared with earlier results. We evaluate the analytical expression for the sensor sensitivity and predict it to be approximately 0.02 °C-1 for the temperature interval from room temperature to above 200 °C, increasing from 0.01 °C-1 at the edges of the interval to 0.03 °C-1 at the center, at 100–130 °C. The sensitivity again increases at temperatures higher than 300 °C, delineating its useful temperature intervals.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter
Appl. Opt. 34(34) 8019-8025 (1995)

Fiber-optic thermometer using temperature dependent absorption, broadband detection, and time domain referencing

Grigory Adamovsky and Nancy D. Piltch
Appl. Opt. 25(23) 4439-4443 (1986)

1.2-μm transitions in erbium-doped fibers: the possibility of quasi-distributed temperature sensors

Eric Maurice, Gérard Monnom, D. B. Ostrowsky, and G. W. Baxter
Appl. Opt. 34(21) 4196-4199 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription