Abstract

We have designed a photoacoustic probe for port-wine stain (PWS) depth measurements consisting of optical fibers for laser light delivery and a piezoelectric element for acoustic detection. We characterized the capabilities and limitations of the probe for profiling PWS skin. The probe induced and measured photoacoustic waves in acrylamide tissue phantoms and PWS skin in vivo. The optical properties of the phantoms were chosen to mimic those of PWS skin. We denoised acoustic waves using spline wavelet transforms, then deconvolved with the impulse response of the probe to yield initial subsurface pressure distributions in phantoms and PWS skin. Using the phantoms, we determined that the limit in resolving epidermal and PWS layers was less than 70 μm. In addition, we used the phantoms to determine that the maximum epidermal melanin concentration that allowed detection of PWS was between 13 and 20%. In vivo measurements of PWS skin with different epidermal melanin concentrations correlated with the phantoms. Thus the photoacoustic probe can be used to determine PWS depth for most patients receiving laser therapy.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
    [CrossRef]
  2. T. B. Fitzpatrick, “The validity and practicality of sun-reactive skin types I through VI,” Arch. Dermatol. 124, 869–871 (1988).
    [CrossRef]
  3. J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
    [CrossRef] [PubMed]
  4. J. S. Nelson, B. Majaron, K. M. Kelly, “Active skin cooling in conjunction with laser dermatologic surgery,” Semin. Cutan. Med. Surg. 19, 253–266 (2000).
    [CrossRef]
  5. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).
  6. A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101 (1993).
    [CrossRef]
  7. J. A. Viator, S. L. Jacques, S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
    [CrossRef]
  8. J. A. Viator, G. Paltauf, S. L. Jacques, S. A. Prahl, “Design and testing of an endoscopic photoacoustic probe for determining treatment depth after photodynamic therapy of esophageal cancer,” in Biomedical Optics II, A. A. Oraevsky, ed., Proc. SPIE4256, 16–27 (2001).
    [CrossRef]
  9. J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
    [CrossRef] [PubMed]
  10. M. J. C. van Gemert, A. J. Welch, J. W. Pickering, O. T. Tan, “Laser treatment of port wine stains,” in Optical Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
    [CrossRef]
  11. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef] [PubMed]
  12. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  13. G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
    [CrossRef]
  14. G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys. A 68, 525–531 (1999).
    [CrossRef]
  15. J. S. Walker, A Primer on Wavelets and their Scientific Applications (CRC Press, Boca Raton, Fla., 1999).
    [CrossRef]
  16. N. V. Thakor, D. Sherman, “Wavelet (time-scale) analysis in biomedical signal processing,” in The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).
  17. G. Kaiser, A Friendly Guide to Wavelets (Birkhauser, Boston, Mass., 1994).
  18. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, Pa., 1992).
    [CrossRef]
  19. D. L. Donoho, I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am. Stat. Assoc. 90, 1200–1224 (1995).
    [CrossRef]
  20. J. Claerbout, S. Fomel, “Image estimation by example: geophysical soundings image construction: multidimensional autoregression” (2000); http://sepwww.stanford.edu/sep/prof .
  21. C. Taswell, “The what, how, and why of wavelet shrinkage denoising,” Comput. Sci. Eng. 2, 12–19 (2000).
    [CrossRef]

2002 (1)

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

2000 (2)

J. S. Nelson, B. Majaron, K. M. Kelly, “Active skin cooling in conjunction with laser dermatologic surgery,” Semin. Cutan. Med. Surg. 19, 253–266 (2000).
[CrossRef]

C. Taswell, “The what, how, and why of wavelet shrinkage denoising,” Comput. Sci. Eng. 2, 12–19 (2000).
[CrossRef]

1999 (2)

J. A. Viator, S. L. Jacques, S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys. A 68, 525–531 (1999).
[CrossRef]

1998 (1)

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

1995 (2)

D. L. Donoho, I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am. Stat. Assoc. 90, 1200–1224 (1995).
[CrossRef]

J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
[CrossRef] [PubMed]

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

1991 (1)

1988 (1)

T. B. Fitzpatrick, “The validity and practicality of sun-reactive skin types I through VI,” Arch. Dermatol. 124, 869–871 (1988).
[CrossRef]

Aguilar, G.

G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
[CrossRef]

Anvari, B.

J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
[CrossRef] [PubMed]

Au, G.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Basinger, B.

G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
[CrossRef]

Chen, Z.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Daubechies, I.

I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, Pa., 1992).
[CrossRef]

Donoho, D. L.

D. L. Donoho, I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am. Stat. Assoc. 90, 1200–1224 (1995).
[CrossRef]

Fitzpatrick, T. B.

T. B. Fitzpatrick, “The validity and practicality of sun-reactive skin types I through VI,” Arch. Dermatol. 124, 869–871 (1988).
[CrossRef]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Jacques, S. L.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

J. A. Viator, S. L. Jacques, S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101 (1993).
[CrossRef]

J. A. Viator, G. Paltauf, S. L. Jacques, S. A. Prahl, “Design and testing of an endoscopic photoacoustic probe for determining treatment depth after photodynamic therapy of esophageal cancer,” in Biomedical Optics II, A. A. Oraevsky, ed., Proc. SPIE4256, 16–27 (2001).
[CrossRef]

Johnstone, I. M.

D. L. Donoho, I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am. Stat. Assoc. 90, 1200–1224 (1995).
[CrossRef]

Kaiser, G.

G. Kaiser, A Friendly Guide to Wavelets (Birkhauser, Boston, Mass., 1994).

Karapetian, E.

G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
[CrossRef]

Kelly, K. M.

J. S. Nelson, B. Majaron, K. M. Kelly, “Active skin cooling in conjunction with laser dermatologic surgery,” Semin. Cutan. Med. Surg. 19, 253–266 (2000).
[CrossRef]

Kimel, S.

J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
[CrossRef] [PubMed]

Lavernia, E. J.

G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
[CrossRef]

Majaron, B.

J. S. Nelson, B. Majaron, K. M. Kelly, “Active skin cooling in conjunction with laser dermatologic surgery,” Semin. Cutan. Med. Surg. 19, 253–266 (2000).
[CrossRef]

G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
[CrossRef]

Milner, T. E.

J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
[CrossRef] [PubMed]

Moes, C. J. M.

Nelson, J. S.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

J. S. Nelson, B. Majaron, K. M. Kelly, “Active skin cooling in conjunction with laser dermatologic surgery,” Semin. Cutan. Med. Surg. 19, 253–266 (2000).
[CrossRef]

J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
[CrossRef] [PubMed]

G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101 (1993).
[CrossRef]

Paltauf, G.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys. A 68, 525–531 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

J. A. Viator, G. Paltauf, S. L. Jacques, S. A. Prahl, “Design and testing of an endoscopic photoacoustic probe for determining treatment depth after photodynamic therapy of esophageal cancer,” in Biomedical Optics II, A. A. Oraevsky, ed., Proc. SPIE4256, 16–27 (2001).
[CrossRef]

Pickering, J. W.

M. J. C. van Gemert, A. J. Welch, J. W. Pickering, O. T. Tan, “Laser treatment of port wine stains,” in Optical Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Prahl, S. A.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

J. A. Viator, S. L. Jacques, S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

J. A. Viator, G. Paltauf, S. L. Jacques, S. A. Prahl, “Design and testing of an endoscopic photoacoustic probe for determining treatment depth after photodynamic therapy of esophageal cancer,” in Biomedical Optics II, A. A. Oraevsky, ed., Proc. SPIE4256, 16–27 (2001).
[CrossRef]

Ren, H.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Rosencwaig, A.

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).

Schmidt-Kloiber, H.

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys. A 68, 525–531 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

Sherman, D.

N. V. Thakor, D. Sherman, “Wavelet (time-scale) analysis in biomedical signal processing,” in The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Svaasand, L. O.

J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
[CrossRef] [PubMed]

G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
[CrossRef]

Tan, O. T.

M. J. C. van Gemert, A. J. Welch, J. W. Pickering, O. T. Tan, “Laser treatment of port wine stains,” in Optical Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Tanenbaum, B. S.

J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
[CrossRef] [PubMed]

Taswell, C.

C. Taswell, “The what, how, and why of wavelet shrinkage denoising,” Comput. Sci. Eng. 2, 12–19 (2000).
[CrossRef]

Thakor, N. V.

N. V. Thakor, D. Sherman, “Wavelet (time-scale) analysis in biomedical signal processing,” in The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101 (1993).
[CrossRef]

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

M. J. C. van Gemert, A. J. Welch, J. W. Pickering, O. T. Tan, “Laser treatment of port wine stains,” in Optical Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

van Marle, J.

van Staveren, H. J.

Viator, J. A.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

J. A. Viator, S. L. Jacques, S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
[CrossRef]

J. A. Viator, G. Paltauf, S. L. Jacques, S. A. Prahl, “Design and testing of an endoscopic photoacoustic probe for determining treatment depth after photodynamic therapy of esophageal cancer,” in Biomedical Optics II, A. A. Oraevsky, ed., Proc. SPIE4256, 16–27 (2001).
[CrossRef]

Walker, J. S.

J. S. Walker, A Primer on Wavelets and their Scientific Applications (CRC Press, Boca Raton, Fla., 1999).
[CrossRef]

Welch, A. J.

M. J. C. van Gemert, A. J. Welch, J. W. Pickering, O. T. Tan, “Laser treatment of port wine stains,” in Optical Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (1)

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys. A 68, 525–531 (1999).
[CrossRef]

Arch. Dermatol. (2)

T. B. Fitzpatrick, “The validity and practicality of sun-reactive skin types I through VI,” Arch. Dermatol. 124, 869–871 (1988).
[CrossRef]

J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995).
[CrossRef] [PubMed]

Comput. Sci. Eng. (1)

C. Taswell, “The what, how, and why of wavelet shrinkage denoising,” Comput. Sci. Eng. 2, 12–19 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Viator, S. L. Jacques, S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[CrossRef]

J. Acoust. Soc. Am. (1)

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

J. Am. Stat. Assoc. (1)

D. L. Donoho, I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am. Stat. Assoc. 90, 1200–1224 (1995).
[CrossRef]

Lasers Surg. Med. (2)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Semin. Cutan. Med. Surg. (1)

J. S. Nelson, B. Majaron, K. M. Kelly, “Active skin cooling in conjunction with laser dermatologic surgery,” Semin. Cutan. Med. Surg. 19, 253–266 (2000).
[CrossRef]

Other (10)

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101 (1993).
[CrossRef]

M. J. C. van Gemert, A. J. Welch, J. W. Pickering, O. T. Tan, “Laser treatment of port wine stains,” in Optical Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

J. A. Viator, G. Paltauf, S. L. Jacques, S. A. Prahl, “Design and testing of an endoscopic photoacoustic probe for determining treatment depth after photodynamic therapy of esophageal cancer,” in Biomedical Optics II, A. A. Oraevsky, ed., Proc. SPIE4256, 16–27 (2001).
[CrossRef]

G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001).
[CrossRef]

J. Claerbout, S. Fomel, “Image estimation by example: geophysical soundings image construction: multidimensional autoregression” (2000); http://sepwww.stanford.edu/sep/prof .

J. S. Walker, A Primer on Wavelets and their Scientific Applications (CRC Press, Boca Raton, Fla., 1999).
[CrossRef]

N. V. Thakor, D. Sherman, “Wavelet (time-scale) analysis in biomedical signal processing,” in The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).

G. Kaiser, A Friendly Guide to Wavelets (Birkhauser, Boston, Mass., 1994).

I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, Pa., 1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Photoacoustic probe consisting of two 1500-μm-diameter optical fibers and a PVDF sensing element. The output ends of the fibers and the PVDF were set within a chamber that was filled with water for acoustic coupling to the target surface. Set screws were used to steer the fiber ends to direct the laser spot directly beneath the PVDF.

Fig. 2
Fig. 2

Photograph of the probe design. The rigid coaxial cable can be seen extending into the inner chamber of the probe.

Fig. 3
Fig. 3

Experimental apparatus for the photoacoustic experiments.

Fig. 4
Fig. 4

Photoacoustic signal (solid gray curve) and its denoised counterpart (dashed black curve) accomplished by wavelet soft thresholding.

Fig. 5
Fig. 5

We determined the impulse response of the photoacoustic probe by irradiating an acrylamide phantom with μ a = 1500 cm-1. The oscillation prior to 1 μs is due to electrical noise from the laser.

Fig. 6
Fig. 6

Separations of the epidermal and PWS peaks. The PWS peak decreases in amplitude as it merges with the negative diffractive signal from the early peak (epidermal signal). The bloodless dermis thickness is indicated by the value at the top of each graph, and deeper PWSs correspond to greater separation of the two peaks.

Fig. 7
Fig. 7

Epidermal melanin layers were modeled by means of absorbing superficial layers in the tissue phantoms. Although PWS signals are evident for the (a) 2, (b) 5, and (c) 13% melanin concentration, at (d) 20% melanin concentration the PWS is not observed.

Fig. 8
Fig. 8

Four PWS patient measurements. Epidermal and PWS signals are shown for skin types (a) I–II, (b) III, and (c) IV, although one measurement of skin type (d) IV is difficult to interpret.

Fig. 9
Fig. 9

Photoacoustic signals from (a) the turbid acrylamide phantom with 5% epidermal melanin content and (b) PWS type I–II human skin. Although the depths and pressures are different, the signals show similar relationships in the epidermal and PWS profiles.

Fig. 10
Fig. 10

(a) Heavisine function used to illustrate the Haar transform. (b) The noisy Heavisine function created when random noise is added to Heavisine.

Fig. 11
Fig. 11

One-level Haar transform of noiseless Heavisine shows the trend signal, appearing as a compressed version of Heavisine, followed by the fluctuation signal. The fluctuation signal is nearly featureless because the Heavisine is continuous almost everywhere. The fluctuation signal at approximately the element number of 1400 is due to the discontinuity of Heavisine at element number 800.

Fig. 12
Fig. 12

The denoised signal was performed on the noisy Heavisine signal (a) with hard thresholding and (b) with soft thresholding. Soft thresholding gives better denoising, even though the same threshold level was used in both denoising functions.

Fig. 13
Fig. 13

(a) Hard thresholding function is discontinuous at the threshold value, whereas (b) the soft thresholding function maintains continuity by the introduction of the shrinkage values, giving a transition to zero for the wavelet transform values.

Tables (2)

Tables Icon

Table 1 Optical Properties and Layer Thicknesses of Phantoms Used for the Experiments to Determine the Maximum Epidermal Melanin Concentration for Threshold Detection of a Photoacoustic PWS Signal

Tables Icon

Table 2 Actual Thicknesses of Layered Acrylamide Phantoms versus Thicknesses Determined Photoacoustically

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

p0= 12 ΓH0μa
Hω=FFTht,
Pω=FFTpt,
Sω= PωHωHω2+δ2,
Y=WX Z=DY, λ, Sˆ=W-1Z,
Twinfω, t= dsfsgs-texp-iωs,
Twavfa, b=|a|-1/2  dtftψt-ba,
f H1a1|d1,
a1H2a2|d2,
f H2a2|d2|d1.
ft=4 sin 4πt-sgnt-0.3-sgn0.72-t,
ci=0ci<λciciλ,
ci=0ci<λsgnci|ci|-τci>λ.

Metrics