Abstract

We report on in vivo absorption and scattering imaging of a human breast cyst and implant, using a reconstruction algorithm based on our third-order diffusion equations. To validate these in vivo images, a series of phantom experiments were conducted, in which we used low-absorbing and low-scattering heterogeneities to mimic a breast cyst or implant. These heterogeneities or targets were composed of pure water or a mixture of water and very dilute Intralipid (0.05% and 0.1%). The phantom experiments confirmed the quantitative imaging capability of our improved algorithm for reconstructing heterogeneities where the conventional diffusion approximation is inadequate. Pilot clinical results from female volunteers indicate that enhanced diffuse optical tomography can quantitatively image findings such as breast cysts or implants in which the absorption and scattering coefficients are usually low.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
    [CrossRef]
  2. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
    [CrossRef] [PubMed]
  3. A. D. Klose, A. H. Heilscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
    [CrossRef] [PubMed]
  4. H. Dehghani, D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt. Soc. Am. A 19, 1162–1171 (2000).
    [CrossRef]
  5. J. Ripoll, S. R. Arridge, H. Dehghani, M. Nieto-Vesperinas, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).
    [CrossRef]
  6. H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  7. A. H. Hielscher, A. Klose, U. Netz, H. Cappius, J. Beuthan, “Saggital optical tomography for the diagnosis of rheumatoid arthritis in finger joints,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 590–592.
  8. N. Iftimia, H. Jiang, “Quantitative optical image reconstruction of turbid media using dc measurements,” Appl. Opt. 39, 5256–5261 (2000).
    [CrossRef]
  9. Y. Xu, X. Gu, T. Khan, H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002).
    [CrossRef] [PubMed]
  10. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
    [CrossRef] [PubMed]
  11. N. Iftimia, X. Gu, Y. Xu, H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum 74, 2811–2817 (2003).
    [CrossRef]
  12. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).

2003 (1)

N. Iftimia, X. Gu, Y. Xu, H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum 74, 2811–2817 (2003).
[CrossRef]

2002 (1)

2001 (1)

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).

2000 (3)

1999 (2)

H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999), http://www.opticsexpress.org.
[CrossRef] [PubMed]

A. D. Klose, A. H. Heilscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

1998 (1)

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

1997 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

1995 (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Alcouffe, R. E.

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

Arridge, S. R.

Barbour, R. L.

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

Baron, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).

Beuthan, J.

A. H. Hielscher, A. Klose, U. Netz, H. Cappius, J. Beuthan, “Saggital optical tomography for the diagnosis of rheumatoid arthritis in finger joints,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 590–592.

Cappius, H.

A. H. Hielscher, A. Klose, U. Netz, H. Cappius, J. Beuthan, “Saggital optical tomography for the diagnosis of rheumatoid arthritis in finger joints,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 590–592.

Chance, B.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Dehghani, H.

Delpy, D. T.

Eggert, J.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).

Fajardo, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).

Gu, X.

N. Iftimia, X. Gu, Y. Xu, H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum 74, 2811–2817 (2003).
[CrossRef]

Y. Xu, X. Gu, T. Khan, H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002).
[CrossRef] [PubMed]

Heilscher, A. H.

A. D. Klose, A. H. Heilscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

A. H. Hielscher, A. Klose, U. Netz, H. Cappius, J. Beuthan, “Saggital optical tomography for the diagnosis of rheumatoid arthritis in finger joints,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 590–592.

Iftimia, N.

N. Iftimia, X. Gu, Y. Xu, H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum 74, 2811–2817 (2003).
[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).

N. Iftimia, H. Jiang, “Quantitative optical image reconstruction of turbid media using dc measurements,” Appl. Opt. 39, 5256–5261 (2000).
[CrossRef]

Jiang, H.

Khan, T.

Klose, A.

A. H. Hielscher, A. Klose, U. Netz, H. Cappius, J. Beuthan, “Saggital optical tomography for the diagnosis of rheumatoid arthritis in finger joints,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 590–592.

Klose, A. D.

A. D. Klose, A. H. Heilscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

Klove, K.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).

Netz, U.

A. H. Hielscher, A. Klose, U. Netz, H. Cappius, J. Beuthan, “Saggital optical tomography for the diagnosis of rheumatoid arthritis in finger joints,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 590–592.

Nieto-Vesperinas, M.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Ripoll, J.

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Xu, Y.

N. Iftimia, X. Gu, Y. Xu, H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum 74, 2811–2817 (2003).
[CrossRef]

Y. Xu, X. Gu, T. Khan, H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002).
[CrossRef] [PubMed]

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).

Yodh, A.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Med. Imaging (1)

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).

J. Opt. Soc. Am. A (2)

Med. Phys. (1)

A. D. Klose, A. H. Heilscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (2)

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Phys. Today (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Rev. Sci. Instrum (1)

N. Iftimia, X. Gu, Y. Xu, H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum 74, 2811–2817 (2003).
[CrossRef]

Other (1)

A. H. Hielscher, A. Klose, U. Netz, H. Cappius, J. Beuthan, “Saggital optical tomography for the diagnosis of rheumatoid arthritis in finger joints,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 590–592.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Phantom geometry for (a) one target cases, and (b) two targets cases.

Fig. 2
Fig. 2

Comparison of boundary data for a representative phantom case (long-dashed curve, measured; short-dashed curve, computed from FODE; solid curve, computed from TODE). Note that data in four detector points closest to the source are not shown.

Fig. 3
Fig. 3

Reconstructed absorption and scattering images: (a) absorption image for one pure-water target, (b) scattering image for one pure-water target, (c) absorption image for one water plus 0.05% Intralipid target, (d) scattering image for one water plus 0.05% Intralipid target, (e) absorption image for one water plus 0.1% Intralipid target, (f) scattering image for one water plus 0.1% Intralipid target, (g) absorption image for two targets (water plus 0.1% Intralipid), (h) scattering image for two targets (water plus 0.1% Intralipid).

Fig. 4
Fig. 4

Comparison of exact (dashed-dotted curve) and reconstructed (solid and dotted curves) absorption distributions along transect CD, EF, or C* D* shown in Fig. 1 for the images appearing in Fig. 3, where the solid curves are the recovered results from the TODE algorithm and the dotted curves give the recovered results from the FODE algorithm: (a) absorption profiles along transect CD for the image shown in Fig. 3(a), (b) absorption profiles along transect EF for the image shown in Fig. 3(a), (c) absorption profiles along transect CD for the image shown in Fig. 3(c), (d) absorption profiles along transect EF for the image shown in Fig. 3(c), (e) absorption profiles along transect CD for the image shown in Fig. 3(e), (f) absorption profiles along transect EF for the image shown in Fig. 3(e), (g) absorption profiles along transect C* D* for the image shown in Fig. 3(g).

Fig. 5
Fig. 5

Comparison of exact (dashed-dotted curve) and reconstructed (solid and dotted curves) scattering distributions along transect CD, EF, or C* D* shown in Fig. 1 for the images appearing in Fig. 3, where the solid curves are the recovered results from the TODE algorithm and the dotted curves present the recovered results from the FODE algorithm: (a) scattering profiles along transect CD for the image shown in Fig. 3b, (b) scattering profiles along transect EF for the image shown in Fig. 3(b), (c) scattering profiles along transect CD for the image shown in Fig. 3(d), (d) scattering profiles along transect EF for the image shown in Fig. 3(d), (e) scattering profiles along transect CD for the image shown in Fig. 3(f), (f) scattering profiles along transect EF for the image shown in Fig. 3(f); (g) scattering profiles along transect C* D* for the image shown in Fig. 3(h).

Fig. 6
Fig. 6

Reconstructed absorption and scattering images for two female volunteers: (a) absorption image and (b) scattering image for the volunteer with a 2-cm cyst in the left breast; (c) absorption image and (d) scattering image for the volunteer with a 4-cm saline implant in the right breast.

Tables (1)

Tables Icon

Table 1 Recovered Geometric Information and Optical Properties of Clinical Results

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

·DrΦ1r-μarΦ1r-·DrΦ2r+6·Dr1Φ3r+6·Dr2Φ4r=-Sr,
-·DrΦ1r+257 ·DrΦ2r-5μtrΦ2r-607 ·Dr1Φ3r-607 ·Dr2Φ4r=0,
·Dr1Φ1r-107 ·Dr1Φ2r+907 ·DrΦ3r-10μtrΦ3r=0,
12 ·Dr2Φ1r-57 ·Dr2Φ2r+457 ·DrΦ4r-5μtrΦ4r=0,
=xˆ x+ŷ y, 1=xˆ x-ŷ y, 2=xˆ y+ŷ x.

Metrics