Abstract

Although diffuse optical tomography is a highly promising technique used to noninvasively image blood volume and oxygenation, the reconstructed data are sensitive to systemic differences between the forward model and the actual experimental conditions. In particular, small changes in optode location or in the optode-tissue coupling coefficient significantly degrade the quality of the reconstruction images. Accurate system calibration therefore is an essential part of any experimental protocol. We present a technique for simultaneously calibrating optode positions and reconstructing images that significantly improves image quality, as we demonstrate with simulations and phantom experiments.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
    [CrossRef]
  2. S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
    [CrossRef]
  3. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulse, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
    [CrossRef]
  4. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  5. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
    [CrossRef]
  6. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).
  7. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Exp. 6, 49–57 (2000); http://www.opticsexpress.org .
    [CrossRef]
  8. A. H. Hielscher, A. Y. Bluestone, C. H. Schmitz, R. L. Barbour, G. S. Abdoulaev, “Volumetric imaging of hemodynamic effects in the human brain by three-dimensional diffuse optical tomography,” in Digest of Advances in Optical Imaging and Photon Migration, OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 310–312.
  9. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. (to be published).
  10. B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
    [CrossRef] [PubMed]
  11. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
    [CrossRef] [PubMed]
  12. R. J. Gaudette, D. A. Boas, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, “Comparison of linear reconstruction techniques for 3D DPDW imaging of absorption coefficient,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 55–66 (1999).
    [CrossRef]
  13. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
    [CrossRef]
  14. D. A. Boas, T. J. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffusive optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
    [CrossRef]
  15. B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
    [CrossRef] [PubMed]
  16. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  17. B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993).
    [CrossRef] [PubMed]
  18. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
    [CrossRef] [PubMed]
  19. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  20. G. H. Golub, J. M. Ortega, Scientific Computing and Differential Equations: An Introduction to Numerical Methods, 2nd ed. (Academic, San Diego, Calif., 1981).
  21. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  22. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999).

2001 (4)

B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

D. A. Boas, T. J. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffusive optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
[CrossRef]

2000 (1)

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Exp. 6, 49–57 (2000); http://www.opticsexpress.org .
[CrossRef]

1999 (4)

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulse, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

1995 (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

1994 (1)

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

1993 (2)

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993).
[CrossRef] [PubMed]

1992 (1)

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

1989 (1)

Abdoulaev, G. S.

A. H. Hielscher, A. Y. Bluestone, C. H. Schmitz, R. L. Barbour, G. S. Abdoulaev, “Volumetric imaging of hemodynamic effects in the human brain by three-dimensional diffuse optical tomography,” in Digest of Advances in Optical Imaging and Photon Migration, OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 310–312.

Arridge, S. R.

D. A. Boas, T. J. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffusive optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Barbour, R. L.

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
[CrossRef]

A. H. Hielscher, A. Y. Bluestone, C. H. Schmitz, R. L. Barbour, G. S. Abdoulaev, “Volumetric imaging of hemodynamic effects in the human brain by three-dimensional diffuse optical tomography,” in Digest of Advances in Optical Imaging and Photon Migration, OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 310–312.

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Bevilacqua, F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Bluestone, A. Y.

A. H. Hielscher, A. Y. Bluestone, C. H. Schmitz, R. L. Barbour, G. S. Abdoulaev, “Volumetric imaging of hemodynamic effects in the human brain by three-dimensional diffuse optical tomography,” in Digest of Advances in Optical Imaging and Photon Migration, OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 310–312.

Boas, D. A.

D. A. Boas, T. J. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffusive optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

R. J. Gaudette, D. A. Boas, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, “Comparison of linear reconstruction techniques for 3D DPDW imaging of absorption coefficient,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 55–66 (1999).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999).

Brooks, D. H.

R. J. Gaudette, D. A. Boas, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, “Comparison of linear reconstruction techniques for 3D DPDW imaging of absorption coefficient,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 55–66 (1999).
[CrossRef]

Butler, J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Chance, B.

B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
[CrossRef] [PubMed]

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. (to be published).

Culver, J. P.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. (to be published).

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

DiMarzio, C. A.

R. J. Gaudette, D. A. Boas, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, “Comparison of linear reconstruction techniques for 3D DPDW imaging of absorption coefficient,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 55–66 (1999).
[CrossRef]

Durduran, T.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. (to be published).

Fantini, S.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Exp. 6, 49–57 (2000); http://www.opticsexpress.org .
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

Filiaci, M. E.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Exp. 6, 49–57 (2000); http://www.opticsexpress.org .
[CrossRef]

Franceschini, M. A.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Exp. 6, 49–57 (2000); http://www.opticsexpress.org .
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. (to be published).

Gaudette, R. J.

R. J. Gaudette, D. A. Boas, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, “Comparison of linear reconstruction techniques for 3D DPDW imaging of absorption coefficient,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 55–66 (1999).
[CrossRef]

Gaudette, T. J.

D. A. Boas, T. J. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffusive optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

Gerety, E. D.

Golub, G. H.

G. H. Golub, J. M. Ortega, Scientific Computing and Differential Equations: An Introduction to Numerical Methods, 2nd ed. (Academic, San Diego, Calif., 1981).

Graber, H. L.

Gratton, E.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Exp. 6, 49–57 (2000); http://www.opticsexpress.org .
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. (to be published).

Grosenick, D.

Haskell, R. C.

Hielscher, A. H.

A. H. Hielscher, A. Y. Bluestone, C. H. Schmitz, R. L. Barbour, G. S. Abdoulaev, “Volumetric imaging of hemodynamic effects in the human brain by three-dimensional diffuse optical tomography,” in Digest of Advances in Optical Imaging and Photon Migration, OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 310–312.

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Holcombe, R.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Hueber, D.

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

Jakubowski, D.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Kak, A. C.

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).

Kilmer, M. E.

R. J. Gaudette, D. A. Boas, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, “Comparison of linear reconstruction techniques for 3D DPDW imaging of absorption coefficient,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 55–66 (1999).
[CrossRef]

Maulik, D.

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

McBride, T. O.

Miller, E. L.

R. J. Gaudette, D. A. Boas, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, “Comparison of linear reconstruction techniques for 3D DPDW imaging of absorption coefficient,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 55–66 (1999).
[CrossRef]

Moesta, K. T.

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

Ortega, J. M.

G. H. Golub, J. M. Ortega, Scientific Computing and Differential Equations: An Introduction to Numerical Methods, 2nd ed. (Academic, San Diego, Calif., 1981).

Osterberg, U. L.

Patterson, M. S.

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Paulse, K. D.

Pei, Y.

Pogue, B. W.

Poplack, S. B.

Rinneberg, H. H.

Rosenfeld, W.

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

Schlag, P. M.

Schmitz, C. H.

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
[CrossRef]

A. H. Hielscher, A. Y. Bluestone, C. H. Schmitz, R. L. Barbour, G. S. Abdoulaev, “Volumetric imaging of hemodynamic effects in the human brain by three-dimensional diffuse optical tomography,” in Digest of Advances in Optical Imaging and Photon Migration, OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 310–312.

Schweiger, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Shah, N.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Slaney, M.

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).

Stankovic, M. R.

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

Stubblefield, P. G.

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

Svaasand, L. O.

Toronov, V.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Exp. 6, 49–57 (2000); http://www.opticsexpress.org .
[CrossRef]

Tromberg, B.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T.-T.

Wabnitz, H.

Wilson, B. C.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999).

Yodh, A.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Yodh, A. G.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. (to be published).

Zhong, S.

Acad. Radiol. (2)

B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Appl. Opt. (4)

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Opt. Exp. (3)

D. A. Boas, T. J. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffusive optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Exp. 6, 49–57 (2000); http://www.opticsexpress.org .
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Exp. 4, 308–314 (1999); http://www.opticsexpress.org .
[CrossRef]

Phys. Med. Biol. (1)

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

Phys. Today (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Other (7)

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).

A. H. Hielscher, A. Y. Bluestone, C. H. Schmitz, R. L. Barbour, G. S. Abdoulaev, “Volumetric imaging of hemodynamic effects in the human brain by three-dimensional diffuse optical tomography,” in Digest of Advances in Optical Imaging and Photon Migration, OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 310–312.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. (to be published).

R. J. Gaudette, D. A. Boas, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, “Comparison of linear reconstruction techniques for 3D DPDW imaging of absorption coefficient,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 55–66 (1999).
[CrossRef]

G. H. Golub, J. M. Ortega, Scientific Computing and Differential Equations: An Introduction to Numerical Methods, 2nd ed. (Academic, San Diego, Calif., 1981).

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999).

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Trajectories of the individual optode positions during calibration. (a) and (b) show the source and detector trajectories, respectively, where the starting positions are marked by the circles and the final positions are marked by stars. (c) and (d) show the actual optode source and detector positions, respectively.

Fig. 2
Fig. 2

Two views of the source-detector geometry used to generate our simulation results. (a) Simulation geometry; (b) geometry top view. Sources (stars) are in the Z = 0 plane; detectors (circles) are in the Z = 5-cm plane.

Fig. 3
Fig. 3

Reconstructions of simulated data, with and without calibration. Each column is the reconstruction at a fixed depth (from left to right: Z = 0.25 cm, Z = 2.75 cm, and Z = 4.75 cm). The top row is a reconstruction of the data with no attempt made to correct for amplitude or positional errors. The second row was corrected for amplitude errors only; the third row was corrected for positional errors only. The fourth row was simultaneously corrected for both positional and amplitude errors. The bottom row is the actual inhomogeneity. Note the difference in scales between the top and bottom images.

Fig. 4
Fig. 4

Data from the middle (Z = 2.75 cm) column of Fig. 3, plotted with uniform gray scales. The correct background absorption is μ a = 0.050 cm-1, and the absorption inside the sphere is μ a sphere = 0.075 cm-1. Even in the middle of the volume, positional calibration improves the reconstructed data.

Fig. 5
Fig. 5

Plots of detected fluence as a function of source-detector separation. (a) Simulated data plotted at the nominal source-detector positions. (b) The same data plotted at the source-detector positions after amplitude and positional error correction. For perfectly calibrated data, the points would sit on a single straight line.

Fig. 6
Fig. 6

Compression plates with fibers of our clinical breast imaging system. The plastic plates are standard mammography plates modified to hold our optical fiber arrays. The sources are on the bottom plate and fill roughly the middle third of the plate (only the ends of the fibers are clearly visible). Detector fibers can be seen coming out of the top plate. The imager electronics are to the right, outside the photo.

Fig. 7
Fig. 7

Geometry of our clinical breast imaging system. (a) Simulation geometry, (b) geometry, top view. Sources (stars) are in the Z = 0 plane; detectors (circles) are located above. The thickness of the phantom was 3.7 cm.

Fig. 8
Fig. 8

Reconstructions of clinical phantom data, with and without error corrections. Each column is the reconstruction at a fixed depth (from left to right: Z = 0.25 cm, Z = 1.75 cm, and Z = 3.75 cm). The top row is a reconstruction of the data with no attempt made to correct for amplitude or positional errors. The second row was corrected for amplitude errors only; the third row was corrected for positional errors only. The fourth row was simultaneously corrected for both positional and amplitude errors. Note the difference in scales between the different rows.

Fig. 9
Fig. 9

Reconstructions of inhomogeneous laboratory phantom data, with and without error corrections. The inhomogeneity was a fluid-filled 2-cm glass sphere centered at approximately x = 8.25 cm, y = 9.75 cm, and z = 4.75 cm. Each column is a slice through the reconstruction at a fixed depth (from left to right: Z = 0.25 cm, Z = 2.25 cm, and Z = 4.75 cm). The top row is a reconstruction of the data with no attempt made to correct for amplitude or positional errors. The middle row was corrected for amplitude errors only. Artifacts in the source amplitude (Z = 0 plane) were greatly reduced, but the errors in the detectors (Z = 5 plane) remain. The bottom row was simultaneously corrected for both positional and amplitude errors. The artifacts in the source plane and the detector plane are significantly reduced, leaving a much cleaner reconstruction of the perturbation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ϕimeas=SjiλliDkiλliϕitheory,
FS, D=1Nm1σi2 |logϕimeas/ϕitheory-logSji-logDki|2,
ϕitheory=ϕtheoryrs,ji, rd,ki,
FS, D, rs, rd=i=1Nm1σi2 |logϕimeas/ϕitheory-logSji -logDki|2,
Δr=-1σ2JRTJR-1JRTy,
Ji,n=rnlog ϕitheory,
r=rs,1, rs,2,, rs,ns, rd,1, rd,2,, rd,nd,
yi=logϕimeas/ϕitheory.
JRTJR-1JRTJR+αI-1JRT,
Fμa, μs, S, D, rs, rd=1Nm1σi2 |logϕimeas/ϕitheory -logSji-logDki|2,
ϕitheory=ϕitheoryrs,ji, rd,ki; μa; μs.
y=Jμa|Jμs|JS|JD|JRΔx,
rn+1=0.4Δr+rn,
|n-1|-|n||n-1|<0.01,
|n-1|-|n||n-1|<0.01,

Metrics