Abstract

Near-infrared (NIR) optical tomography can provide estimates of the internal distribution of optical absorption and transport scattering from boundary measurements of light propagation within biological tissue. Although this is a truly three-dimensional (3D) imaging problem, most research to date has concentrated on two-dimensional modeling and image reconstruction. More recently, 3D imaging algorithms are demonstrating better estimation of the light propagation within the imaging region and are providing the basis of more accurate image reconstruction algorithms. As 3D methods emerge, it will become increasingly important to evaluate their resolution, contrast, and localization of optical property heterogeneity. We present a concise study of 3D reconstructed resolution of a small, low-contrast, absorbing and scattering anomaly as it is placed in different locations within a cylindrical phantom. The object is an 8-mm-diameter cylinder, which represents a typical small target that needs to be resolved in NIR mammographic imaging. The best resolution and contrast is observed when the object is located near the periphery of the imaging region (12–22 mm from the edge) and is also positioned within the multiple measurement planes, with the most accurate results seen for the scatter image when the anomaly is at 17 mm from the edge. Furthermore, the accuracy of quantitative imaging is increased to almost 100% of the target values when a priori information regarding the internal structure of imaging domain is utilized.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
    [CrossRef]
  2. H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three dimensional near infrared tomography of the breast: initial simulation, phantom and clinical results,” Appl. Opt.135–145 (2003).
    [CrossRef]
  3. T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
    [CrossRef] [PubMed]
  4. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
    [CrossRef]
  5. S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet in real time,” Opt. Express 4, 308–314 (1999).
    [CrossRef] [PubMed]
  6. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
    [CrossRef]
  7. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
    [CrossRef]
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  9. H. Jiang, K. D. Paulsen, U. L. Osterberg, M. Patterson, “Frequency domain optical image reconstruction in turbid media: an experimental study of single-target delectability,” Appl. Opt. 36, 52–63 (1997).
    [CrossRef] [PubMed]
  10. B. W. Pogue, C. Willscher, T. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
    [CrossRef]
  11. M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
    [CrossRef]
  12. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
    [CrossRef]
  13. A. Gibson, R. M. Yusof, E. M. C. Hillman, H. Dehghani, J. Riley, N. Everdale, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
    [CrossRef] [PubMed]
  14. B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearlly reconstructed near-infrared tomographic images: Part I - theory and simulation,” IEEE Trans. Med. Imaging 21, 755–763 (2002).
    [CrossRef] [PubMed]
  15. X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II - experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
    [CrossRef] [PubMed]
  16. T. O. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. dissertation (Dartmouth College, Hanover, N.H., 2001).
  17. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
    [CrossRef]
  18. M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  19. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  20. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  21. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  22. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  23. R. Penrose, “A generalized inverse for matrices,” Proc. Cambridge Philos. Soc. 51, 406–413 (1955).
    [CrossRef]
  24. J. Schoberl, “NETGEN—an automatic 3D tetrahedral mesh generator,” http://www.sfb013.uni-linz.ac.at/∼joachim/netgen/ .
  25. M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2722 (1999).
    [CrossRef] [PubMed]
  26. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast following Indocyanine Green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
    [CrossRef]

2003 (2)

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three dimensional near infrared tomography of the breast: initial simulation, phantom and clinical results,” Appl. Opt.135–145 (2003).
[CrossRef]

A. Gibson, R. M. Yusof, E. M. C. Hillman, H. Dehghani, J. Riley, N. Everdale, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
[CrossRef] [PubMed]

2002 (4)

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearlly reconstructed near-infrared tomographic images: Part I - theory and simulation,” IEEE Trans. Med. Imaging 21, 755–763 (2002).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II - experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef]

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

2001 (4)

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

2000 (2)

B. W. Pogue, C. Willscher, T. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast following Indocyanine Green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

1999 (4)

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2722 (1999).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet in real time,” Opt. Express 4, 308–314 (1999).
[CrossRef] [PubMed]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1995 (3)

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

1955 (1)

R. Penrose, “A generalized inverse for matrices,” Proc. Cambridge Philos. Soc. 51, 406–413 (1955).
[CrossRef]

Arridge, S. R.

A. Gibson, R. M. Yusof, E. M. C. Hillman, H. Dehghani, J. Riley, N. Everdale, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2722 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Baron, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Boas, D. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Chance, B.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast following Indocyanine Green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

Dehghani, H.

Delpy, D. T.

A. Gibson, R. M. Yusof, E. M. C. Hillman, H. Dehghani, J. Riley, N. Everdale, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Eggert, J.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Eppstein, M. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef]

Everdale, N.

Fajardo, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Fantini, S.

Franceschini, M. A.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Geimer, S.

Gibson, A.

Godavarty, A.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef]

Gratton, E.

Hawrysz, D. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef]

Hebden, J. C.

Hillman, E. M. C.

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Hiroaka, M.

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Hueber, D.

Iftimia, N.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Ito, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Jiang, H.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. Patterson, “Frequency domain optical image reconstruction in turbid media: an experimental study of single-target delectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Jiang, S.

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearlly reconstructed near-infrared tomographic images: Part I - theory and simulation,” IEEE Trans. Med. Imaging 21, 755–763 (2002).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II - experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Klove, K.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Maulik, D.

McBride, T.

B. W. Pogue, C. Willscher, T. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

McBride, T. O.

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearlly reconstructed near-infrared tomographic images: Part I - theory and simulation,” IEEE Trans. Med. Imaging 21, 755–763 (2002).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II - experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

T. O. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. dissertation (Dartmouth College, Hanover, N.H., 2001).

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast following Indocyanine Green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

Oda, I.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oikawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

B. W. Pogue, C. Willscher, T. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. Patterson, “Frequency domain optical image reconstruction in turbid media: an experimental study of single-target delectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

Österberg, U. L.

Patterson, M.

Patterson, M. S.

Paulsen, K. D.

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three dimensional near infrared tomography of the breast: initial simulation, phantom and clinical results,” Appl. Opt.135–145 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II - experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearlly reconstructed near-infrared tomographic images: Part I - theory and simulation,” IEEE Trans. Med. Imaging 21, 755–763 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

B. W. Pogue, C. Willscher, T. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. Patterson, “Frequency domain optical image reconstruction in turbid media: an experimental study of single-target delectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Penrose, R.

R. Penrose, “A generalized inverse for matrices,” Proc. Cambridge Philos. Soc. 51, 406–413 (1955).
[CrossRef]

Pogue, B. W.

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three dimensional near infrared tomography of the breast: initial simulation, phantom and clinical results,” Appl. Opt.135–145 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II - experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearlly reconstructed near-infrared tomographic images: Part I - theory and simulation,” IEEE Trans. Med. Imaging 21, 755–763 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

B. W. Pogue, C. Willscher, T. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

Poplack, S. P.

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three dimensional near infrared tomography of the breast: initial simulation, phantom and clinical results,” Appl. Opt.135–145 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Richards, R.

Riley, J.

Rosenfeld, W.

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast following Indocyanine Green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

Schweiger, M.

Sevick-Muraca, E. M.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef]

Soho, S.

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Song, X.

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearlly reconstructed near-infrared tomographic images: Part I - theory and simulation,” IEEE Trans. Med. Imaging 21, 755–763 (2002).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II - experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

Stankovic, M. R.

Stubblefield, P. G.

Tamaru, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tosteson, T. D.

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II - experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearlly reconstructed near-infrared tomographic images: Part I - theory and simulation,” IEEE Trans. Med. Imaging 21, 755–763 (2002).
[CrossRef] [PubMed]

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tsunazawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Veenstra, H.

Wada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Wells, W. A.

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Willscher, C.

B. W. Pogue, C. Willscher, T. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

Xu, Y.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Yamada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Yamashita, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast following Indocyanine Green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

Yusof, R. M.

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Appl. Opt. (7)

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three dimensional near infrared tomography of the breast: initial simulation, phantom and clinical results,” Appl. Opt.135–145 (2003).
[CrossRef]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. Patterson, “Frequency domain optical image reconstruction in turbid media: an experimental study of single-target delectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

A. Gibson, R. M. Yusof, E. M. C. Hillman, H. Dehghani, J. Riley, N. Everdale, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

IEEE Signal Process. Mag. (1)

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

IEEE Trans. Med. Imaging (3)

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearlly reconstructed near-infrared tomographic images: Part I - theory and simulation,” IEEE Trans. Med. Imaging 21, 755–763 (2002).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II - experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt. (1)

T. O. McBride, B. W. Pogue, S. P. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (4)

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

B. W. Pogue, C. Willscher, T. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (1)

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2722 (1999).
[CrossRef] [PubMed]

Proc. Cambridge Philos. Soc. (1)

R. Penrose, “A generalized inverse for matrices,” Proc. Cambridge Philos. Soc. 51, 406–413 (1955).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast following Indocyanine Green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Other (2)

T. O. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. dissertation (Dartmouth College, Hanover, N.H., 2001).

J. Schoberl, “NETGEN—an automatic 3D tetrahedral mesh generator,” http://www.sfb013.uni-linz.ac.at/∼joachim/netgen/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup in which a hollow phantom of radius 42 mm and of height 109 mm was filled with a mixture of Intralipid solution and India ink to produce a uniform background μ a = 0.0058 mm-1 and μ s ′ = 1.26 mm-1. The small cylindrical anomaly had a radius of 8 mm and a height of 10 mm with μ a = 0.0099 mm-1 and μ s ′ = 1.5 mm-1. The anomaly was initially positioned at x = -27 mm, y = 0 mm, and z = 0 mm. The dashed curves represent the measurement planes, at z = -10 mm, z = 0 mm, and z = 10 mm, each containing 16 source-detector fibers, starting with the bottom curve.

Fig. 2
Fig. 2

Finite-element, 3D meshes used for modeling and image reconstruction. Mesh used for calculation of (a) the Jacobian and (b) the lower-resolution reconstruction mesh. In both cases, cross sections through the plane defined by y = 0 mm are shown.

Fig. 3
Fig. 3

Reconstructed images when the anomaly is located at x = -27 mm, y = 0 mm, and z = 0 mm. The top row contains absorption images, and the bottom row shows the reduced scatter images. In each case, images are 2D cross sections through the reconstructed 3D volume. The right-hand side corresponds to the top of the cylinder (z = 50 mm), whereas the left corresponds to the bottom of the cylinder (z = -50 mm), with each slice representing a 10-mm increment.

Fig. 4
Fig. 4

Same as Fig. 3, with the anomaly at x = -22 mm.

Fig. 5
Fig. 5

Same as Fig. 3, with the anomaly at x = -17 mm.

Fig. 6
Fig. 6

Same as Fig. 3, with the anomaly at x = -12 mm.

Fig. 7
Fig. 7

Same as Fig. 3, with the anomaly at x = -7 mm.

Fig. 8
Fig. 8

Same as Fig. 3, with the anomaly at x = -2 mm.

Fig. 9
Fig. 9

Calculated transects of both (a) μ a and (b) μ s ′ at z = 0 mm and y = 0 mm for images shown in Figs. 3 8.

Fig. 10
Fig. 10

Reconstructed images when the anomaly is located at x = -22 mm, y = 0 mm, and z = 20 mm. Top row is absorption coefficient images, whereas those in the bottom row are reduced scattering coefficient images. Displayed are 2D cross sections through the reconstructed 3D volume. The right-hand side corresponds to the top of the cylinder (z = 50 mm), and the left corresponds to the bottom of the cylinder (z = -50 mm), with each slice being a 10-mm increment.

Fig. 11
Fig. 11

Same as Fig. 10, with the anomaly positioned at x = -22 mm, y = 0 mm, and z = 10 mm.

Fig. 12
Fig. 12

Transects of both (a) μ a and (b) μ s ′ at z = 0 mm and y = 0 mm for images shown in Figs. 4, 10, and 11.

Fig. 13
Fig. 13

Finite-element mesh used for modeling and image reconstruction in the case of the incorporating the a priori information. As in Fig. 2, the cross section at y = 0 mm is shown, to facilitate viewing of the meshing of the anomaly.

Fig. 14
Fig. 14

Reconstructed images when the anomaly is positioned at x = -22 mm, y = 0 mm, and z = 20 mm, and a priori information on the position and shape of the anomaly has been included. Top row is absorption images, whereas the bottom row is the reduced scatter images. In each case, images represent 2D cross sections through the reconstructed 3D volume. The right-hand side corresponds to the top of the cylinder (z = 50 mm), and the left corresponds to the bottom of the cylinder (z = -50 mm), with each slice being a 10-mm increment.

Tables (1)

Tables Icon

Table 1 Calculated Peak and FWHM of the Absorption and Transport Scattering Values for the Reconstructed Images Shown in Figs. 3 8

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

-·κrΦr, ω+μa+iωcΦr, ω=q0r, ω,
Φγ+κα nˆ·Φγ=0,
μˆa, κˆ=arg minμa,κ y*-Fμa, κ ,
a=JTJJT+ρI-1b,
J˜=JK,
K=R1R2ΛRnk1,1k1,2Λk1,nk2,1k2,2Λk2,nMMOMkj,1kj,2Λkj,n, where kξ,η= 1,ξRη0,ξRη.
ã=J˜TJ˜-1J˜Tb,
a=ãK-1.

Metrics