Abstract

We have begun clinical trials of optical tomography of the neonatal brain. To validate this research, we have built and imaged an anatomically realistic, tissue-equivalent neonatal head phantom that is hollow, allowing contrasting objects to be placed inside it. Images were reconstructed by use of two finite-element meshes, one generated from a computed tomography image of the phantom and the other spherical. The phantom was filled with a liquid of the same optical properties as the outer region, and two perturbations were placed inside. These were successfully imaged with good separation between the absorption and scatter coefficients. The phantom was then refilled with a liquid of increased absorption compared with the background to simulate the brain, and the absolute properties of the two regions were found. These were used as a priori information for the complete reconstruction. Both perturbations were visible, superimposed on the increased absorption of the central region. The head-shaped mesh performed slightly better than the spherical mesh, particularly when the absorption of the central region of the phantom was increased.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  2. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
    [CrossRef] [PubMed]
  3. S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
    [CrossRef] [PubMed]
  4. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
    [CrossRef] [PubMed]
  5. G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000).
    [CrossRef] [PubMed]
  6. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
    [CrossRef]
  8. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
    [CrossRef]
  9. J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.
  10. H. Jiang, Y. Xu, N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  11. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
    [CrossRef]
  12. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, H. D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
    [CrossRef]
  13. J. C. Hebden, H. Veestra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
    [CrossRef]
  14. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef] [PubMed]
  15. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue, in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
    [CrossRef]
  16. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex-vivo human skin and sub-cutaneous tissues measured using the Monte-Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef] [PubMed]
  17. J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
    [CrossRef] [PubMed]
  18. J. Schöberl, “NETGEN—an advancing front 2D/3D mesh generator based on abstract rules,” Comput. Visual Sci. 1, 41–52 (1997).
    [CrossRef]
  19. M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
    [CrossRef] [PubMed]
  20. V. Ntziachristos, A. G. Yodh, M. D. Schnall, B. Chance, “Optimization of diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
    [CrossRef] [PubMed]
  21. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite-element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  22. H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
    [CrossRef]
  23. H. Dehghani, D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt. Soc. Am. A 19, 1162–1171 (2002).
    [CrossRef]

2003

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

2002

V. Ntziachristos, A. G. Yodh, M. D. Schnall, B. Chance, “Optimization of diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

H. Dehghani, D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt. Soc. Am. A 19, 1162–1171 (2002).
[CrossRef]

2001

J. C. Hebden, H. Veestra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

2000

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, H. D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000).
[CrossRef] [PubMed]

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

1999

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
[CrossRef] [PubMed]

1998

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex-vivo human skin and sub-cutaneous tissues measured using the Monte-Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org .
[CrossRef] [PubMed]

1997

J. Schöberl, “NETGEN—an advancing front 2D/3D mesh generator based on abstract rules,” Comput. Visual Sci. 1, 41–52 (1997).
[CrossRef]

1995

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite-element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Abdoulaev, G.

Anday, E.

Andronica, R.

Arif, I.

Arridge, S. R.

J. C. Hebden, H. Veestra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, H. D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite-element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

Austin, T.

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

Barbour, R. L.

Barbour, S.-L. S.

Benaron, D. A.

S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Bluestone, A.

Bluestone, A. Y.

Boas, D.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Boas, D. A.

S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Chance, B.

Cheng, X.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Cheong, W.-F.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex-vivo human skin and sub-cutaneous tissues measured using the Monte-Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Dehghani, H.

Delpy, D. T.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

H. Dehghani, D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt. Soc. Am. A 19, 1162–1171 (2002).
[CrossRef]

J. C. Hebden, H. Veestra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite-element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue, in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

Delpy, H. D. T.

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex-vivo human skin and sub-cutaneous tissues measured using the Monte-Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue, in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Everdell, N.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

Firbank, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Frahm, J.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Fry, M. E.

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, H. D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

Fujiwara, M.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000).
[CrossRef] [PubMed]

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Gibson, A.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

Gonzalez, F. M.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Graber, H. L.

Hebden, J. C.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. C. Hebden, H. Veestra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, H. D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
[CrossRef]

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

Hielscher, A. H.

Hillman, E. M. C.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. C. Hebden, H. Veestra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, H. D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
[CrossRef]

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

Hintz, S. R.

S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Hira, J.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite-element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Hirth, C.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Hong, L.

Iftimia, N.

Jiang, H.

Kermit, E. L.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Kleinschmidt, A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex-vivo human skin and sub-cutaneous tissues measured using the Monte-Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Koizumi, H.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000).
[CrossRef] [PubMed]

Konishi, Y.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000).
[CrossRef] [PubMed]

Li, C.

Luo, H.

Maki, A.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000).
[CrossRef] [PubMed]

Mandeville, J. B.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Marota, J. J. A.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Martelli, F.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Md. Yusof, R.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Meek, J. H.

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

Murray, T.

Nioka, S.

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. D. Schnall, B. Chance, “Optimization of diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

Obrig, H.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Oda, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Ovetsky, Y.

Pei, Y.

Pidikiti, D.

Ramirez, N.

Schmidt, F. E. W.

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, H. D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
[CrossRef]

Schmitz, C. H.

Schnall, M. D.

V. Ntziachristos, A. G. Yodh, M. D. Schnall, B. Chance, “Optimization of diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

Schöberl, J.

J. Schöberl, “NETGEN—an advancing front 2D/3D mesh generator based on abstract rules,” Comput. Visual Sci. 1, 41–52 (1997).
[CrossRef]

Schweiger, M.

J. C. Hebden, H. Veestra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, H. D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite-element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Siegal, A. M.

S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex-vivo human skin and sub-cutaneous tissues measured using the Monte-Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Soller, I.

Stevenson, D. K.

S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Strangman, G.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Tachibana, T.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000).
[CrossRef] [PubMed]

Taga, G.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000).
[CrossRef] [PubMed]

Thomas, R.

van der Zee, P.

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue, in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

van Houten, J. C.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Veestra, H.

Villringer, A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

Worden, K.

Xu, Y.

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. D. Schnall, B. Chance, “Optimization of diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

Yusof, R.

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

Zaccanti, G.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Zhong, S.

Zhou, S.

Zourabian, A.

S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

Appl. Opt.

Comput. Visual Sci.

J. Schöberl, “NETGEN—an advancing front 2D/3D mesh generator based on abstract rules,” Comput. Visual Sci. 1, 41–52 (1997).
[CrossRef]

Int. J. Imaging Sys. Technol.

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000).
[CrossRef]

J. Biomed. Opt.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Perinat. Med.

S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

Med. Phys.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite-element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Neoplasia

V. Ntziachristos, A. G. Yodh, M. D. Schnall, B. Chance, “Optimization of diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

Neuroimage

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Neurosci. Lett.

G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex-vivo human skin and sub-cutaneous tissues measured using the Monte-Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Other

J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue, in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) 3D CT image of the phantom and helmet; (b) head-shaped finite element mesh, with the surface cut away to show the internal structure.

Fig. 2
Fig. 2

Schematic diagram of the experimental method.

Fig. 3
Fig. 3

(a) Reconstruction of homogeneous phantom onto the head-shaped finite-element mesh. The top row shows transverse slices and the bottom row sagittal slices through the 3D image. The left-hand column is a schematic representation of the phantom showing the approximate location of the perturbations. The middle and right-hand columns show the scatter and absorption images, respectively. (b) Reconstruction of homogeneous phantom onto the spherical finite-element mesh. The slices are the same as those in the head-shaped mesh.

Fig. 4
Fig. 4

(a) Reconstruction of the inhomogeneous phantom onto the head-shaped finite-element mesh, with homogeneous starting conditions. (b) Reconstruction of the inhomogeneous phantom onto the spherical finite element mesh, with homogeneous starting conditions.

Fig. 5
Fig. 5

(a) Reconstruction of the inhomogeneous phantom onto the head-shaped finite element mesh, starting from the calculated region properties. (b) Reconstruction of the inhomogeneous phantom onto the spherical finite-element mesh, starting from the calculated region properties.

Tables (1)

Tables Icon

Table 1 Expected and Calculated Properties of the Two Regions in the Inhomogeneous Phantom

Metrics