Abstract

A nonlinear, Bayesian optimization scheme is presented for reconstructing fluorescent yield and lifetime, the absorption coefficient, and the diffusion coefficient in turbid media, such as biological tissue. The method utilizes measurements at both the excitation and the emission wavelengths to reconstruct all unknown parameters. The effectiveness of the reconstruction algorithm is demonstrated by simulation and by application to experimental data from a tissue phantom containing the fluorescent agent Indocyanine Green.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
    [CrossRef]
  3. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  4. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  5. A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
    [CrossRef] [PubMed]
  6. B. Ballou, G. W. Fisher, T. R. Hakala, D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–658 (1997).
    [CrossRef] [PubMed]
  7. R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997).
    [CrossRef] [PubMed]
  8. J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
    [CrossRef]
  9. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
    [CrossRef] [PubMed]
  10. U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
    [PubMed]
  11. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
    [CrossRef] [PubMed]
  12. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
    [CrossRef] [PubMed]
  13. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
    [CrossRef] [PubMed]
  14. J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
    [CrossRef] [PubMed]
  15. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  16. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
    [CrossRef] [PubMed]
  17. R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
    [CrossRef]
  18. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
    [CrossRef] [PubMed]
  19. D. Paithankar, A. Chen, B. Pogue, M. Patterson, E. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
    [CrossRef] [PubMed]
  20. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
    [CrossRef]
  21. J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
    [CrossRef]
  22. V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
    [CrossRef]
  23. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1, 404–413 (1997); http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  24. J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
    [CrossRef]
  25. J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
    [CrossRef]
  26. A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
    [CrossRef]
  27. J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
    [CrossRef]
  28. J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
    [CrossRef] [PubMed]
  29. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
    [CrossRef]
  30. C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
    [CrossRef] [PubMed]
  31. K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
    [CrossRef]
  32. J. C. Adams, “MUDPACK: multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
    [CrossRef]
  33. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  34. S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
    [CrossRef]
  35. S. Oh, A. B. Milstein, C. A. Bouman, K. J. Webb, “Multigrid inversion algorithms with applications to optical diffusion tomography,” in Proceedings of the 36th Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 901–905.
  36. K. Sauer, C. Bouman, “Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE Trans. Nucl. Sci. 39, 1144–1152 (1992).
    [CrossRef]
  37. Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 219–238 (2001).
    [CrossRef]
  38. R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
    [CrossRef]
  39. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  40. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  41. R. C. Benson, H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
    [CrossRef] [PubMed]
  42. D. Boas, T. Gaudette, S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
    [CrossRef]
  43. M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
    [PubMed]
  44. A. D. Klose, A. H. Hielscher, “A transport-theory-based reconstruction algorithm for optical tomography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 26–35 (1999).
    [CrossRef]
  45. S. R. Arridge, “Photon-measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  46. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

2002

2001

R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
[CrossRef]

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

D. Boas, T. Gaudette, S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

2000

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

1999

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

1998

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
[CrossRef]

H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
[CrossRef]

1997

B. Ballou, G. W. Fisher, T. R. Hakala, D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–658 (1997).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
[CrossRef]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

D. Paithankar, A. Chen, B. Pogue, M. Patterson, E. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1, 404–413 (1997); http://www.opticsexpress.org .
[CrossRef] [PubMed]

1996

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

1995

1994

1993

C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
[CrossRef] [PubMed]

K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
[CrossRef]

1992

K. Sauer, C. Bouman, “Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE Trans. Nucl. Sci. 39, 1144–1152 (1992).
[CrossRef]

1991

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
[CrossRef] [PubMed]

1990

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

1989

J. C. Adams, “MUDPACK: multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

1978

R. C. Benson, H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
[CrossRef] [PubMed]

1976

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

1973

Achilefu, S.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Adams, J. C.

J. C. Adams, “MUDPACK: multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

Arridge, S.

D. Boas, T. Gaudette, S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

Arridge, S. R.

Ballou, B.

B. Ballou, G. W. Fisher, T. R. Hakala, D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–658 (1997).
[CrossRef] [PubMed]

Barbour, R. L.

Becker, A.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Ben-Amotz, D.

Benson, R. C.

R. C. Benson, H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
[CrossRef] [PubMed]

Boas, D.

D. Boas, T. Gaudette, S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

Boas, D. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1, 404–413 (1997); http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Bogdanov, J. A.

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[PubMed]

Bouman, C.

K. Sauer, C. Bouman, “Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE Trans. Nucl. Sci. 39, 1144–1152 (1992).
[CrossRef]

Bouman, C. A.

A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[CrossRef]

S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
[CrossRef]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
[CrossRef] [PubMed]

K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
[CrossRef]

S. Oh, A. B. Milstein, C. A. Bouman, K. J. Webb, “Multigrid inversion algorithms with applications to optical diffusion tomography,” in Proceedings of the 36th Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 901–905.

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Brukilacchio, T. J.

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Buchegger, F.

A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
[CrossRef] [PubMed]

Bugaj, J. E.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Canti, G.

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997).
[CrossRef] [PubMed]

Chance, B.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[CrossRef] [PubMed]

Chang, J.

Chen, A.

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

Cornell, K. K.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997).
[CrossRef] [PubMed]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Dorshow, R. B.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Downar, T. J.

Duderstadt, J. J.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

Ebert, B.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Farkas, D. L.

B. Ballou, G. W. Fisher, T. R. Hakala, D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–658 (1997).
[CrossRef] [PubMed]

Fisher, G. W.

B. Ballou, G. W. Fisher, T. R. Hakala, D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–658 (1997).
[CrossRef] [PubMed]

Folli, S.

A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Gaudett, T.

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Gaudette, T.

D. Boas, T. Gaudette, S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

Graber, H. L.

Grotzinger, C.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Hakala, T. R.

B. Ballou, G. W. Fisher, T. R. Hakala, D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–658 (1997).
[CrossRef] [PubMed]

Hale, G. M.

Hamilton, L. J.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

Hessenius, C.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Hielscher, A. H.

A. D. Klose, A. H. Hielscher, “A transport-theory-based reconstruction algorithm for optical tomography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 26–35 (1999).
[CrossRef]

Hutchinson, C. L.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Jiang, H.

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Klose, A. D.

A. D. Klose, A. H. Hielscher, “A transport-theory-based reconstruction algorithm for optical tomography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 26–35 (1999).
[CrossRef]

Kues, H. A.

R. C. Benson, H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
[CrossRef] [PubMed]

Kwant, G.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Landsman, M. L. J.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

LaPlant, F. P.

Li, A.

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Li, X. D.

Licha, K.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Lopez, G.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Low, P. S.

J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
[CrossRef]

Mach, J.

A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
[CrossRef] [PubMed]

Mahmood, U.

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[PubMed]

Mayer, R. H.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

Millane, R. P.

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Milstein, A. B.

S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
[CrossRef]

A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[CrossRef]

S. Oh, A. B. Milstein, C. A. Bouman, K. J. Webb, “Multigrid inversion algorithms with applications to optical diffusion tomography,” in Proceedings of the 36th Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 901–905.

Moes, C. J. M.

Mook, G. A.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Ntziachristos, V.

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

O’Leary, M. A.

Oh, S.

S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
[CrossRef]

A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[CrossRef]

S. Oh, A. B. Milstein, C. A. Bouman, K. J. Webb, “Multigrid inversion algorithms with applications to optical diffusion tomography,” in Proceedings of the 36th Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 901–905.

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Paithankar, D.

Patterson, M.

Patterson, M. S.

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pèlegrin, A.

A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pifferi, A.

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997).
[CrossRef] [PubMed]

Pogue, B.

Pogue, B. W.

Prahl, S. A.

Querry, M. R.

Rajagopalan, R.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Reddy, J. A.

J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
[CrossRef]

Reynolds, J. S.

A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[CrossRef]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

Riefke, B.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Roy, R.

Saquib, S. S.

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

Sauer, K.

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
[CrossRef] [PubMed]

K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
[CrossRef]

K. Sauer, C. Bouman, “Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE Trans. Nucl. Sci. 39, 1144–1152 (1992).
[CrossRef]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Semmler, W.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Sevick-Muraca, E.

Sevick-Muraca, E. M.

R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
[CrossRef]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Snyder, P. W.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Sukowski, U.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997).
[CrossRef] [PubMed]

Thompson, A. B.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Thompson, C. A.

Troy, T. L.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Tung, C.

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[PubMed]

Valentini, G.

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997).
[CrossRef] [PubMed]

van den Bergh, H.

A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
[CrossRef] [PubMed]

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Wagnières, G.

A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
[CrossRef] [PubMed]

Wang, L.

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Waters, D. J.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Webb, K. J.

A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[CrossRef]

S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
[CrossRef]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

S. Oh, A. B. Milstein, C. A. Bouman, K. J. Webb, “Multigrid inversion algorithms with applications to optical diffusion tomography,” in Proceedings of the 36th Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 901–905.

Weissleder, R.

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[PubMed]

Wiedenmann, B.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Ye, J. C.

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[CrossRef] [PubMed]

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Zijlstra, W. G.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Appl. Math. Comput.

J. C. Adams, “MUDPACK: multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

Appl. Opt.

G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
[CrossRef]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

S. R. Arridge, “Photon-measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

D. Paithankar, A. Chen, B. Pogue, M. Patterson, E. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
[CrossRef]

Biotechnol. Prog.

B. Ballou, G. W. Fisher, T. R. Hakala, D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–658 (1997).
[CrossRef] [PubMed]

Cancer

A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991).
[CrossRef] [PubMed]

Crit. Rev. Ther. Drug Carrier Syst.

J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998).
[CrossRef]

IEEE Signal Process. Mag.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

IEEE Trans. Image Process.

C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993).
[CrossRef] [PubMed]

S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998).
[CrossRef]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

IEEE Trans. Nucl. Sci.

K. Sauer, C. Bouman, “Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE Trans. Nucl. Sci. 39, 1144–1152 (1992).
[CrossRef]

IEEE Trans. Signal Process.

K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993).
[CrossRef]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Appl. Physiol.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

J. Biomed. Opt.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nat. Biotechnol.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001).
[CrossRef] [PubMed]

Opt. Exp.

D. Boas, T. Gaudette, S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org .
[CrossRef]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

R. C. Benson, H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Radiology

U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999).
[PubMed]

Other

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 219–238 (2001).
[CrossRef]

S. Oh, A. B. Milstein, C. A. Bouman, K. J. Webb, “Multigrid inversion algorithms with applications to optical diffusion tomography,” in Proceedings of the 36th Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 901–905.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

A. D. Klose, A. H. Hielscher, “A transport-theory-based reconstruction algorithm for optical tomography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 26–35 (1999).
[CrossRef]

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Proposed measurement scheme.

Fig. 2
Fig. 2

True phantom, with cross sections of the widest part of the heterogeneity: (a) μ a x is in cm-1, (b) D x is in cm, (c) μ a m is in cm-1, (d) D m is in cm, (e) τ is in ns, (f) ημ a f is in cm-1, (g) ημ a f = 0.01 cm-1 isosurface.

Fig. 3
Fig. 3

Grid used for both sources and detectors in the simulation, with the relative location of the sphere depicted.

Fig. 4
Fig. 4

Reconstructed phantom: (a) μ̂ a x is in cm-1, (b) x is in cm, (c) μ̂ a m is in cm-1, (d) m is in cm, (e) τ̂ is in ns, (f) ημ̂ a f is in cm-1, (g) ημ̂ a f = 0.01 cm-1 isosurface.

Fig. 5
Fig. 5

Plot of estimate τ̂avg versus the true value of τ. The trend is almost linear, as desired.

Fig. 6
Fig. 6

NRMSE for ημ̂ a f that is due to changes in assumed constant background values for (a) μ a x in cm-1, (b) D x in cm, (c) μ a m in cm-1, (d) D m in cm. The + markers show results from assuming erroneous, constant images, whereas the × markers show the results from computing x and m in advance.

Fig. 7
Fig. 7

Fractional error for τ̂avg that is due to changes in assumed constant background values for (a) μ a x in cm-1, (b) D x in cm, (c) μ a m in cm-1, (d) D m in cm. The + and × markers have the same meaning as in Fig. 6.

Fig. 8
Fig. 8

Schematic of the phantom box showing the fibers, the spherical heterogeneity, and the removable lid.

Fig. 9
Fig. 9

Source and detector layout for the experiment. The darker circles represent the detector positions used in fluorescence measurements. The relative location of the sphere is also shown. (a) Bottom plate (sources). (b) Top plate (detectors).

Fig. 10
Fig. 10

True fluorophore location. z = (a) -1.82, (b) -1.30, (c) -0.78, (d) -0.26, (e) 0.26, (f) 0.78, (g) 1.30, (h) 1.82 cm.

Fig. 11
Fig. 11

Reconstructions of μ a x in cm-1. Values of z for (a)–(h) are the same as in Fig. 10.

Fig. 12
Fig. 12

Reconstructions of μ a m in cm-1. Values of z for (a)–(h) are the same as in Fig. 10.

Fig. 13
Fig. 13

Reconstructions of ημ a f in arbitrary units. Values of z for (a)–(h) are the same as in Fig. 10.

Equations (46)

Equations on this page are rendered with MathJax. Learn more.

·Dxrϕxr, ω-μaxr+jω/cϕxr, ω=-δr-rsk,
·Dmrϕmr, ω-μamr+jω/cϕmr, ω=-ϕxr, ωημafr1-jωτr1+ωτr2,
·Dmrϕmr, ω-μamr+jω/cϕmr, ω=-δr-rsk.
xx=xxaxxb=μaxr1μaxrN, Dxr1DxrNT,xm=xmaxmb=μamr1μamrN, Dmr1DmrNT,xf=xfaxfb=γr1γrN, τr1τrNT,
γr, ω=ημafr11+ωτr2,
·Dmrϕmr, ω-μamr+jω/cϕmr, ω=-ϕxr, ωγr, ω1-jωτr.
xˆMAP=arg maxx0py|x+px,
py|x=1παP|Λ|-1exp-y-fxΛ2α,
α2Λ-1=α2diag|y1|, |y2|,|yP|.
px=pxa·pxb
=1σaNzpaexp-1paσapa×i,jNa bi-j|xi-xj|pa×1σbNzpbexp-1pbσbpb×i,jNb bi-j|xi-xj|pb,
xˆx=arg maxxx0,αxpxx|yx, αx,
xˆm=arg maxxm0,αmpxm|ym, αm,
xˆf=arg maxxf0,αfpxf|yf, αf, xˆx, xˆm.
lx=-P ln y-fxΛ2-1paσapai,jNa bi-j×|xi-xj|pa-1pbσbpbi,jNb bi-j|xi-xj|pb.
αˆ=1P y-fxˆΛ2,
xˆargmaxx0ln py|x, αˆ+ln px|αˆ,
cxx, αˆx=1αˆx yx-fxxxΛx2+1pxaσxapxai,jNxa bi-j|xxai-xxaj|pxa+1pxbσxbpxbi,jNxb bi-j|xxbi-xxbj|pxb,
cxm, αˆm=1αˆm ym-fmxmΛm2+1pmaσmapmai,jNma bi-j|xmai-xmaj|pma+1pmbσmbpmbi,jNmb bi-j|xmbi-xmbj|pmb,
cxf, xˆx, xˆm, αˆf=1αˆf yf-ffxf, xˆx, xˆmΛf2+1pfaσfapfai,jNfa bi-j|xfai - xfaj|pfa+ 1pfbσfbpfbi,jNfb bi-j|xfbi - xfbj|pfb.
y-fxΛ2y-fxˆ-FxˆΔxΛ2,
cx, αˆ1αˆ z-FxˆxΛ2+1paσapai,jNa bi-j×|xi-xj|pa+1pbσbpbi,jNb bi-j|xi-xj|pb,
z=y-fxˆ+Fxˆxˆ.
xˆi=arg minxi01αˆ y-fxˆ-Fxˆ*ixi-xˆiΛ2+1pσpjNi bi-j|xi-xˆj|p,
τˆavg=i=0N-1 γˆriτˆrii=0N-1 γˆri.
NRMSE=i=0N-1 |ημˆafri-ημafri|2i=0N-1 |ημafri|21/2.
yxi=yxiuncalyxicompyxibase,
ymi=ymiuncalymicompymibase,
yfi=yfiuncal-yfibaseyxicompyxibase,
fx=grs1, rd1; x grs1, rd2; x  grs1, rdM; x grs2, rd1; x  grsK, rdM; xT.
Fx=grs1, rd1; xx1grs1, rd1; xx2grs1, rd1; xx2N-1grs1, rd1; xx2Ngrs1, rd2; xx1grs1, rd2; xx2grs1, rd2; xx2N-1grs1, rd2; xx2Ngrs1, rdM; xx1grs1, rdM; xx2grs1, rdM; xx2N-1grs1, rdM; xx2Ngrs2, rd1; xx1grs2, rd1; xx2grs2, rd1; xx2N-1grs2, rd1; xx2NgrsK, rdM; xx1grsK, rdM; xx2grsK, rdM; xx2N-1grsK, rdM; xx2N.
grsk, rdm; xμari-grdm, ri; xgrsk, ri; xV,
grsk, rdm; xDri-grdm, ri; x·grsk, ri; xV,
Gs=grs1, r1; xgrs1, rN; xgrsK, r1; xgrsK, rN; x,
Gd=grd1, r1; xgrd1, rN; xgrdM, r1; xgrdM, rN; x.
Gxs=gxrs1, r1; xxgxrs1, rN; xxgxrsK, r1; xxgxrsK, rN; xx,
Gxd=gxrd1, r1; xxgxrd1, rN; xxgxrdM, r1; xxgxrdM, rN; xx,
Gms=gmrs1, r1; xmgmrs1, rN; xmgmrsK, r1; xmgmrsK, rN; xm,
Gmd=gmrd1, r1; xmgmrd1, rN; xmgmrdM, r1; xmgmrdM, rN; xm.
ημafr1-jωτr1+ωτr2=βRr-jβIr.
gfrsk, rdm; xx, xmβRrigmrdm, ri; xm×gxrsk, ri; xxV,
gfrsk, rdm; xx, xmβIri-jgmrdm, ri; xm×gxrsk, ri; xxV.
gfrsk, rdm; xx, xmγrigmrdm, ri; xmgxrsk, ri; xx×1-jωτˆriV,
gfrsk, rdm; xx, xmτri-jωγˆrigmrdm, ri; xm×gxrsk, ri; xxV.
xˆiarg minxi01αˆ y-fxˆ-Fxˆ*ixi-xˆiΛ2 +1paσapajNi bi-j|xi-xˆi|pa
xˆiarg minxi01αˆ y-fxˆ-Fxˆ*ixi-xˆiΛ2 +1pbσbpbjNi bi-j|xi-xˆi|pb

Metrics