Abstract

A novel high-speed no-moving-parts optical coherence tomography (OCT) system is introduced that acquires sample data at less than a microsecond per data point sampling rate. The basic principle of the proposed OCT system relies on use of an acousto-optic deflector. This OCT system has the attractive features of an acousto-optic scanning heterodyne interferometer coupled with an acousto-optic (AO) variable optical delay line operating in a reflective mode. Fundamentally, OCT systems use a broadband light source for high axial resolution inside the sample or living tissue under examination. Inherently, AO devices are Bragg-mode wavelength-sensitive elements. We identify that two beams generated by a Bragg cell naturally have unbalanced and inverse spectrums with respect to each other. This mismatch in spectrums in turn violates the ideal autocorrelation condition for a high signal-to-noise ratio broadband interferometric sensor such as OCT. We solve this fundamental limitation of Bragg cell use for OCT by deploying a new interferometric architecture where the two interfering beams have the same power spectral profile over the bandwidth of the broadband source. With the proposed AO based system, high (e.g., megahertz) intermediate frequency can be generated for low 1/f noise heterodyne detection. System issues such as resolution, number of axial scans, and delay-path selection time are addressed. Experiments described demonstrate our high-speed acousto-optically tuned OCT system where optical delay lines can be selected at submicrosecond speeds.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
    [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  4. A. M. Rollins, J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
    [CrossRef]
  5. N. A. Riza, “Scanning heterodyne optical interferometers,” Rev. Sci. Instrum. 67, 2466–2476 (1996).
    [CrossRef]
  6. N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145, 15–20 (1998).
    [CrossRef]
  7. N. A. Riza, Z. Yaqoob, “High-speed no-moving-parts optical coherence tomography system,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson, J. G. Fujimoto, eds., Proc. SPIE4160, 37–42 (2000).
    [CrossRef]
  8. N. A. Riza, Z. Yaqoob, “Submicrosecond speed optical coherence tomography system design and analysis using acousto-optics,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., SPIE Proc.4619, 26–35 (2002).
    [CrossRef]
  9. Product SLD-761-MP3-DIL-SM (Superlum Diodes Ltd., P.O. Box 70, B-454, Moscow 117454, Russia, November2001).
  10. A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).
  11. H. Kogelnik, “Coupled wave theory of thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
    [CrossRef]
  12. Product TSL-210-155 (Santec Photonics Laboratories, Komaki, Japan, 1998), http://www.santec.com .
  13. Product ACM-1002 AA1–2 (IntraAction Corp., 3719 Warren Ave., Bellwood, Ill. 60104, 1999), http://www.intraaction.com .
  14. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  15. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]

2001 (1)

1999 (2)

1998 (1)

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145, 15–20 (1998).
[CrossRef]

1996 (1)

N. A. Riza, “Scanning heterodyne optical interferometers,” Rev. Sci. Instrum. 67, 2466–2476 (1996).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1987 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory of thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
[CrossRef]

Boppart, S. A.

Carr, S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chudoba, C.

Davies, D. E. N.

Drexler, W.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Ghanta, R. K.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hartl, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

Kärtner, F. X.

Ko, T. H.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory of thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
[CrossRef]

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Morgner, U.

Pitris, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ranka, J. K.

Riza, N. A.

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145, 15–20 (1998).
[CrossRef]

N. A. Riza, “Scanning heterodyne optical interferometers,” Rev. Sci. Instrum. 67, 2466–2476 (1996).
[CrossRef]

N. A. Riza, Z. Yaqoob, “High-speed no-moving-parts optical coherence tomography system,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson, J. G. Fujimoto, eds., Proc. SPIE4160, 37–42 (2000).
[CrossRef]

N. A. Riza, Z. Yaqoob, “Submicrosecond speed optical coherence tomography system design and analysis using acousto-optics,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., SPIE Proc.4619, 26–35 (2002).
[CrossRef]

Rollins, A. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Windler, R. S.

Yaqoob, Z.

N. A. Riza, Z. Yaqoob, “Submicrosecond speed optical coherence tomography system design and analysis using acousto-optics,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., SPIE Proc.4619, 26–35 (2002).
[CrossRef]

N. A. Riza, Z. Yaqoob, “High-speed no-moving-parts optical coherence tomography system,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson, J. G. Fujimoto, eds., Proc. SPIE4160, 37–42 (2000).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

Youngquist, R. C.

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory of thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
[CrossRef]

Opt. Commun. (1)

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145, 15–20 (1998).
[CrossRef]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

N. A. Riza, “Scanning heterodyne optical interferometers,” Rev. Sci. Instrum. 67, 2466–2476 (1996).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (7)

N. A. Riza, Z. Yaqoob, “High-speed no-moving-parts optical coherence tomography system,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson, J. G. Fujimoto, eds., Proc. SPIE4160, 37–42 (2000).
[CrossRef]

N. A. Riza, Z. Yaqoob, “Submicrosecond speed optical coherence tomography system design and analysis using acousto-optics,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., SPIE Proc.4619, 26–35 (2002).
[CrossRef]

Product SLD-761-MP3-DIL-SM (Superlum Diodes Ltd., P.O. Box 70, B-454, Moscow 117454, Russia, November2001).

A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

Product TSL-210-155 (Santec Photonics Laboratories, Komaki, Japan, 1998), http://www.santec.com .

Product ACM-1002 AA1–2 (IntraAction Corp., 3719 Warren Ave., Bellwood, Ill. 60104, 1999), http://www.intraaction.com .

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Small-Bragg-angle diffraction of broadband incident light beam from acoustic waves. The acoustic-wave propagation is parallel to the AO cell boundary.

Fig. 2
Fig. 2

Experimental setup to study the power spectrum of DC (undiffracted) and +1 diffracted beams. SMF, single-mode fiber; VGA, variable gain amplifier.

Fig. 3
Fig. 3

Plots showing the measured power spectrum of (a) DC and +1 order and (b) DC and -1-order diffracted beams.

Fig. 4
Fig. 4

Schematic to show various beams generated by a Bragg cell operating in reflective mode. Note that the (+1, DC) and (DC, -1) beams are not angularly separated. The angular separation indicated is due to the fact that different wavelengths within the broadband source beam are deflected at different angles.

Fig. 5
Fig. 5

Profiles of (a) α m (λ)(m = 1, 2) and (b) α p (λ)(p = 3, 4) for 50% diffraction efficiency of the AO cell (in the TE case) at the center wavelength λ c .

Fig. 6
Fig. 6

Experimental setup to simulate a Bragg cell operating in reflective mode. The (DC, DC) beam is collinear with the (+1, +1) beam whereas the (+1, DC) beam is collinear with the (DC, -1) beam. SMF, single-mode fiber; VGA, variable gain amplifier.

Fig. 7
Fig. 7

Plots of the power spectrum for (a) DC, DC and +1, +1 beams and (b) DC, -1 and +1, DC beams.

Fig. 8
Fig. 8

Our proposed high-speed AO-based OCT system. S i , spherical lenses; ν, optical frequency; F i , focal length of the ith lens; OMC, optical microelectromechanical system chip; SMF, single-mode fiber; VGA, variable gain amplifier. Note that the (+1, DC) and (DC, -1) beams are collinear. The angular separation indicated is due to the fact that different wavelengths within the broadband source beam are deflected at different angles for these two beams.

Fig. 9
Fig. 9

Experimental setup to test the basic operational principles of our AO-based OCT system. S i , spherical lenses; ν, optical frequency; SMF, single-mode fiber; VGA, variable gain amplifier. Note that the (+1, DC) and (DC, -1) beams are collinear (for details, see the caption of Fig. 4).

Fig. 10
Fig. 10

Oscilloscope traces showing (a) the 90-MHz reference signal from the rf signal generator and (b) the 180-MHz heterodyne signal from our laboratory OCT system setup when both mirrors M 1 and M 2 are at the same position.

Fig. 11
Fig. 11

Oscilloscope traces of the output heterodyne signal when (a) both mirrors M 1 and M 2 are at the same position, (b) M 2 is moved by 12 μm with respect to M 1, (c) M 2 is moved by 17 μm with respect to M 1.

Fig. 12
Fig. 12

Experimental and theoretical plots for the scan distance x n against frequency f n for our laboratory OCT system.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2n νsfcsin θinc,g=λc,
sin θd,gλ=sin θinc,g+λfcnνs.
Δθd,gλ=fcnνs cos θd,gλc Δλ,
η1λ=sin2γ2λ+ξ12λ1/2γ2λγ2λ+ξ12λ.
γλ=πΔndλ cos θinc,g,
ξ1λ=-λ-λcλπdfcνstan θinc,g,
η2λ=sin2γ2λ+ξ22λ1/2γ2λγ2λ+ξ22λ,
ξ2λ=πdfcνsΔθd,gλ-λ-λcλtan θinc,g.
ξ2λ=πdfcνsfcnνs cos θd,gλc-tan θinc,gλλ-λc.
α1λ=1-η1λ2α2λ=η1λη2λα3λ=η1λ1-η1λα4λ=η1λ1-η2λ.
DC, DCsλα1λor sνα1ν+1, +1sλα2λor sνα2νDC, -1sλα3λor sνα3ν+1, DCsλα4λor sνα4ν.
DC, DC: u1t =2 0 sνα1νexp-j2πνtdν, +1, +1: u2t =2 0 sνα2νexp-j2πνtdν,
DC, -1: u3t=2 0 sνα3νexp-j2πνtdν, +1, DC: u4t=2 0 sνα4νexp-j2πνtdν.
Idet=|uIt+uIIt+τ|2 =|uIt|2+|uIIt+τ|2+2 ReuI*t ×uIIt+τ.
γλTM=πΔndλ cos θinc,gcos2θinc,g.

Metrics