Abstract

A basic understanding of the light-scattering processes that take place inside the dental tissue (either sound or carious) is obtained both with measurements of the photon path-length distribution of light inside such media and with Monte Carlo simulations. Furthermore, the following is investigated: the correlations between different moments of the photon path-length distribution of light inside caries lesions, the fluorescence loss determined with quantitative light-induced fluorescence, and/or the demineralization and depth of caries lesions determined with transversal microradiography. It is concluded that (i) the light paths inside both carious and sound enamel are considerably influenced by the refractive-index contrast at the tooth surface; (ii) contrary to a previous hypothesis, the fluorescence loss is larger in lesions in which the average photon path length is longer; (iii) very good correlations are obtained between the optical characteristics and the physical parameters of lesions when the optical measurements are performed such that there is high refractive contrast at the tooth surface.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. K. Stookey, ed., Early Detection of Dental Caries, Proceedings of the First Annual Indiana Conference (Indiana University School of Dentistry, Indianapolis, Ind., 1996).
  2. B. Angmar-Månsson, J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res. 1, 14–20 (1987).
    [PubMed]
  3. G. K. Stookey, ed., Early Detection of Dental Caries II, Proceedings of the Fourth Annual Indiana Conference (Indiana University School of Dentistry, Indianapolis, Ind., 2000).
  4. P. Rechmann, D. Fried, T. Hennig, eds., Lasers in Dentistry VIII, Proc. SPIE4610, (2002).
  5. B. Angmar-Månsson, J. J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298–307 (2001).
    [CrossRef] [PubMed]
  6. J. Peltola, J. Wolf, “Fiber optics transillumination in caries diagnosis,” Proc. Finn. Dent. Soc. 77, 240–244 (1981).
  7. R. Hibst, R. Paulus, A. Lussi, “Detection of occlusal caries by laser fluorescence: basic and clinical investigations,” Med. Laser Applic. 16, 205–214 (2001).
    [CrossRef]
  8. B. W. Colston, U. S. Sathyam, L. B. DaSilva, M. J. Everett, P. Stroeve, L. L. Otis, “Dental OCT,” Opt. Express 3, 230–238 (1998).
    [CrossRef] [PubMed]
  9. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
    [CrossRef]
  10. X. J. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, J. S. Nelson, “Characterization of dentin and enamel by use of optical coherence tomography,” Appl. Opt. 38, 2092–2096 (1999).
    [CrossRef]
  11. D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. Breunig, C. Q. Le, “Imaging caries lesions and lesion progression with polarization-sensitive optical coherence temography,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 113–124 (2002).
    [CrossRef]
  12. B. T. Amaechi, A. Podoleanu, G. Komarov, S. M. Higham, D. J. Jackson, “Optical coherence tomography for dental caries detection and analysis,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 100–108 (2002).
    [CrossRef]
  13. G. Popescu, A. Dogariu, “Optical path-length spectroscopy of wave propagation in random media,” Opt. Lett. 24, 442–444 (1999).
    [CrossRef]
  14. G. Popescu, C. Mujat, A. Dogariu, “Evidence of scattering anisotropy effects on boundary conditions of the diffusion equation,” Phys. Rev. E 61, 4523–4529 (2000).
    [CrossRef]
  15. G. Popescu, A. Dogariu, “Dynamic light scattering in subdiffusive regimes,” Appl. Opt. 40, 4215–4221 (2001).
    [CrossRef]
  16. C. Mujat, J. J. ten Bosch, A. Dogariu, “Optical pathlengths in dental caries lesions,” in Lasers in Dentistry VII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4249, 92–98 (2001).
    [CrossRef]
  17. J. J. ten Bosch, “Summary of research of quantitative light-induced fluorescence,” in Early Detection of Dental Caries II, Proceedings of the Fourth Annual Indiana Conference, G. Stookey, ed. (Indiana University School of Dentistry, Indianapolis, Ind., 2000), pp. 261–277.
  18. J. J. ten Bosch, “Light scattering and related methods in caries diagnosis,” in Early Detection of Dental Caries I, Proceedings of the First Annual Indiana Conference, G. Stookey, ed. (Indiana University School of Dentistry, Indianapolis, Ind.1996), pp. 81–90.
  19. M. D. Lagerweij, E. de Josselin de Jong, J. M. ten-Cate, “The video camera compared with the densitometer as a scanning device for microradiography,” Caries Res. 28, 353–362 (1994).
    [CrossRef] [PubMed]
  20. G. N. Jenkins, The Physiology and Biochemistry of the Mouth (Blackwell Scientific, Oxford, U.K., 1978), pp 54–112.
  21. C. C. Ko, D. Tantbirojn, T. Wang, W. H. Douglas, “Optical scattering power for characterization of mineral loss,” J. Dent. Res. 79, 1584–1589 (2000).
    [CrossRef] [PubMed]
  22. D. Spitzer, J. J. ten Bosch, “Luminescence quantum yields of sound and carious enamel,” Calcif. Tissue Res. 24, 249–251 (1977).
    [CrossRef] [PubMed]
  23. D. Fried, R. E. Glena, J. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl Opt. 34, 1278–1285 (1995).
    [CrossRef] [PubMed]
  24. J. R. Zijp, “Optical properties of dental hard tissues,” Ph.D. dissertation (University of Groningen, the Netherlands, 2001).
  25. D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and dental human enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
    [CrossRef]
  26. J. Vaarkamp, J. J. ten Bosch, E. H. Verdonschot, “Propagation of light through human dental and dentine,” Caries Res. 29, 8–13 (1995).
    [CrossRef]
  27. R. Jones, D. Fried, “Attenuation of 1310-nm and 1550-nm laser light through sound enamel,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Henning, eds., Proc. SPIE4610, 187–190 (2002).
    [CrossRef]

2001 (3)

B. Angmar-Månsson, J. J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298–307 (2001).
[CrossRef] [PubMed]

R. Hibst, R. Paulus, A. Lussi, “Detection of occlusal caries by laser fluorescence: basic and clinical investigations,” Med. Laser Applic. 16, 205–214 (2001).
[CrossRef]

G. Popescu, A. Dogariu, “Dynamic light scattering in subdiffusive regimes,” Appl. Opt. 40, 4215–4221 (2001).
[CrossRef]

2000 (3)

C. C. Ko, D. Tantbirojn, T. Wang, W. H. Douglas, “Optical scattering power for characterization of mineral loss,” J. Dent. Res. 79, 1584–1589 (2000).
[CrossRef] [PubMed]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

G. Popescu, C. Mujat, A. Dogariu, “Evidence of scattering anisotropy effects on boundary conditions of the diffusion equation,” Phys. Rev. E 61, 4523–4529 (2000).
[CrossRef]

1999 (2)

1998 (1)

1995 (2)

D. Fried, R. E. Glena, J. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl Opt. 34, 1278–1285 (1995).
[CrossRef] [PubMed]

J. Vaarkamp, J. J. ten Bosch, E. H. Verdonschot, “Propagation of light through human dental and dentine,” Caries Res. 29, 8–13 (1995).
[CrossRef]

1994 (1)

M. D. Lagerweij, E. de Josselin de Jong, J. M. ten-Cate, “The video camera compared with the densitometer as a scanning device for microradiography,” Caries Res. 28, 353–362 (1994).
[CrossRef] [PubMed]

1987 (1)

B. Angmar-Månsson, J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res. 1, 14–20 (1987).
[PubMed]

1981 (1)

J. Peltola, J. Wolf, “Fiber optics transillumination in caries diagnosis,” Proc. Finn. Dent. Soc. 77, 240–244 (1981).

1977 (1)

D. Spitzer, J. J. ten Bosch, “Luminescence quantum yields of sound and carious enamel,” Calcif. Tissue Res. 24, 249–251 (1977).
[CrossRef] [PubMed]

1975 (1)

D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and dental human enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
[CrossRef]

Amaechi, B. T.

B. T. Amaechi, A. Podoleanu, G. Komarov, S. M. Higham, D. J. Jackson, “Optical coherence tomography for dental caries detection and analysis,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 100–108 (2002).
[CrossRef]

Angmar-Månsson, B.

B. Angmar-Månsson, J. J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298–307 (2001).
[CrossRef] [PubMed]

B. Angmar-Månsson, J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res. 1, 14–20 (1987).
[PubMed]

Baumgartner, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Breunig, T.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. Breunig, C. Q. Le, “Imaging caries lesions and lesion progression with polarization-sensitive optical coherence temography,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 113–124 (2002).
[CrossRef]

Colston, B. W.

DaSilva, L. B.

de Boer, J. F.

de Josselin de Jong, E.

M. D. Lagerweij, E. de Josselin de Jong, J. M. ten-Cate, “The video camera compared with the densitometer as a scanning device for microradiography,” Caries Res. 28, 353–362 (1994).
[CrossRef] [PubMed]

Dichtl, S.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Dogariu, A.

G. Popescu, A. Dogariu, “Dynamic light scattering in subdiffusive regimes,” Appl. Opt. 40, 4215–4221 (2001).
[CrossRef]

G. Popescu, C. Mujat, A. Dogariu, “Evidence of scattering anisotropy effects on boundary conditions of the diffusion equation,” Phys. Rev. E 61, 4523–4529 (2000).
[CrossRef]

G. Popescu, A. Dogariu, “Optical path-length spectroscopy of wave propagation in random media,” Opt. Lett. 24, 442–444 (1999).
[CrossRef]

C. Mujat, J. J. ten Bosch, A. Dogariu, “Optical pathlengths in dental caries lesions,” in Lasers in Dentistry VII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4249, 92–98 (2001).
[CrossRef]

Douglas, W. H.

C. C. Ko, D. Tantbirojn, T. Wang, W. H. Douglas, “Optical scattering power for characterization of mineral loss,” J. Dent. Res. 79, 1584–1589 (2000).
[CrossRef] [PubMed]

Everett, M. J.

Featherstone, J. B.

D. Fried, R. E. Glena, J. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl Opt. 34, 1278–1285 (1995).
[CrossRef] [PubMed]

Featherstone, J. D.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. Breunig, C. Q. Le, “Imaging caries lesions and lesion progression with polarization-sensitive optical coherence temography,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 113–124 (2002).
[CrossRef]

Fercher, A. F.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Fried, D.

D. Fried, R. E. Glena, J. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl Opt. 34, 1278–1285 (1995).
[CrossRef] [PubMed]

R. Jones, D. Fried, “Attenuation of 1310-nm and 1550-nm laser light through sound enamel,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Henning, eds., Proc. SPIE4610, 187–190 (2002).
[CrossRef]

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. Breunig, C. Q. Le, “Imaging caries lesions and lesion progression with polarization-sensitive optical coherence temography,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 113–124 (2002).
[CrossRef]

Glena, R. E.

D. Fried, R. E. Glena, J. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl Opt. 34, 1278–1285 (1995).
[CrossRef] [PubMed]

Hibst, R.

R. Hibst, R. Paulus, A. Lussi, “Detection of occlusal caries by laser fluorescence: basic and clinical investigations,” Med. Laser Applic. 16, 205–214 (2001).
[CrossRef]

Higham, S. M.

B. T. Amaechi, A. Podoleanu, G. Komarov, S. M. Higham, D. J. Jackson, “Optical coherence tomography for dental caries detection and analysis,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 100–108 (2002).
[CrossRef]

Hitzenberger, C. K.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Jackson, D. J.

B. T. Amaechi, A. Podoleanu, G. Komarov, S. M. Higham, D. J. Jackson, “Optical coherence tomography for dental caries detection and analysis,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 100–108 (2002).
[CrossRef]

Jenkins, G. N.

G. N. Jenkins, The Physiology and Biochemistry of the Mouth (Blackwell Scientific, Oxford, U.K., 1978), pp 54–112.

Jones, R.

R. Jones, D. Fried, “Attenuation of 1310-nm and 1550-nm laser light through sound enamel,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Henning, eds., Proc. SPIE4610, 187–190 (2002).
[CrossRef]

Ko, C. C.

C. C. Ko, D. Tantbirojn, T. Wang, W. H. Douglas, “Optical scattering power for characterization of mineral loss,” J. Dent. Res. 79, 1584–1589 (2000).
[CrossRef] [PubMed]

Komarov, G.

B. T. Amaechi, A. Podoleanu, G. Komarov, S. M. Higham, D. J. Jackson, “Optical coherence tomography for dental caries detection and analysis,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 100–108 (2002).
[CrossRef]

Lagerweij, M. D.

M. D. Lagerweij, E. de Josselin de Jong, J. M. ten-Cate, “The video camera compared with the densitometer as a scanning device for microradiography,” Caries Res. 28, 353–362 (1994).
[CrossRef] [PubMed]

Le, C. Q.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. Breunig, C. Q. Le, “Imaging caries lesions and lesion progression with polarization-sensitive optical coherence temography,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 113–124 (2002).
[CrossRef]

Lussi, A.

R. Hibst, R. Paulus, A. Lussi, “Detection of occlusal caries by laser fluorescence: basic and clinical investigations,” Med. Laser Applic. 16, 205–214 (2001).
[CrossRef]

Milner, T. E.

Moritz, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Mujat, C.

G. Popescu, C. Mujat, A. Dogariu, “Evidence of scattering anisotropy effects on boundary conditions of the diffusion equation,” Phys. Rev. E 61, 4523–4529 (2000).
[CrossRef]

C. Mujat, J. J. ten Bosch, A. Dogariu, “Optical pathlengths in dental caries lesions,” in Lasers in Dentistry VII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4249, 92–98 (2001).
[CrossRef]

Nelson, J. S.

Otis, L. L.

Pashley, D. H.

Paulus, R.

R. Hibst, R. Paulus, A. Lussi, “Detection of occlusal caries by laser fluorescence: basic and clinical investigations,” Med. Laser Applic. 16, 205–214 (2001).
[CrossRef]

Peltola, J.

J. Peltola, J. Wolf, “Fiber optics transillumination in caries diagnosis,” Proc. Finn. Dent. Soc. 77, 240–244 (1981).

Podoleanu, A.

B. T. Amaechi, A. Podoleanu, G. Komarov, S. M. Higham, D. J. Jackson, “Optical coherence tomography for dental caries detection and analysis,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 100–108 (2002).
[CrossRef]

Popescu, G.

Robi, B.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Sathyam, U. S.

Sattmann, H.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Seka, W.

D. Fried, R. E. Glena, J. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl Opt. 34, 1278–1285 (1995).
[CrossRef] [PubMed]

Shafi, S.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. Breunig, C. Q. Le, “Imaging caries lesions and lesion progression with polarization-sensitive optical coherence temography,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 113–124 (2002).
[CrossRef]

Sperr, W.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Spitzer, D.

D. Spitzer, J. J. ten Bosch, “Luminescence quantum yields of sound and carious enamel,” Calcif. Tissue Res. 24, 249–251 (1977).
[CrossRef] [PubMed]

D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and dental human enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
[CrossRef]

Stroeve, P.

Tantbirojn, D.

C. C. Ko, D. Tantbirojn, T. Wang, W. H. Douglas, “Optical scattering power for characterization of mineral loss,” J. Dent. Res. 79, 1584–1589 (2000).
[CrossRef] [PubMed]

ten Bosch, J. J.

B. Angmar-Månsson, J. J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298–307 (2001).
[CrossRef] [PubMed]

J. Vaarkamp, J. J. ten Bosch, E. H. Verdonschot, “Propagation of light through human dental and dentine,” Caries Res. 29, 8–13 (1995).
[CrossRef]

B. Angmar-Månsson, J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res. 1, 14–20 (1987).
[PubMed]

D. Spitzer, J. J. ten Bosch, “Luminescence quantum yields of sound and carious enamel,” Calcif. Tissue Res. 24, 249–251 (1977).
[CrossRef] [PubMed]

D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and dental human enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
[CrossRef]

C. Mujat, J. J. ten Bosch, A. Dogariu, “Optical pathlengths in dental caries lesions,” in Lasers in Dentistry VII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4249, 92–98 (2001).
[CrossRef]

J. J. ten Bosch, “Summary of research of quantitative light-induced fluorescence,” in Early Detection of Dental Caries II, Proceedings of the Fourth Annual Indiana Conference, G. Stookey, ed. (Indiana University School of Dentistry, Indianapolis, Ind., 2000), pp. 261–277.

J. J. ten Bosch, “Light scattering and related methods in caries diagnosis,” in Early Detection of Dental Caries I, Proceedings of the First Annual Indiana Conference, G. Stookey, ed. (Indiana University School of Dentistry, Indianapolis, Ind.1996), pp. 81–90.

ten-Cate, J. M.

M. D. Lagerweij, E. de Josselin de Jong, J. M. ten-Cate, “The video camera compared with the densitometer as a scanning device for microradiography,” Caries Res. 28, 353–362 (1994).
[CrossRef] [PubMed]

Vaarkamp, J.

J. Vaarkamp, J. J. ten Bosch, E. H. Verdonschot, “Propagation of light through human dental and dentine,” Caries Res. 29, 8–13 (1995).
[CrossRef]

Verdonschot, E. H.

J. Vaarkamp, J. J. ten Bosch, E. H. Verdonschot, “Propagation of light through human dental and dentine,” Caries Res. 29, 8–13 (1995).
[CrossRef]

Wang, T.

C. C. Ko, D. Tantbirojn, T. Wang, W. H. Douglas, “Optical scattering power for characterization of mineral loss,” J. Dent. Res. 79, 1584–1589 (2000).
[CrossRef] [PubMed]

Wang, X. J.

Wolf, J.

J. Peltola, J. Wolf, “Fiber optics transillumination in caries diagnosis,” Proc. Finn. Dent. Soc. 77, 240–244 (1981).

Xie, J.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. Breunig, C. Q. Le, “Imaging caries lesions and lesion progression with polarization-sensitive optical coherence temography,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 113–124 (2002).
[CrossRef]

Zhang, Y.

Zijp, J. R.

J. R. Zijp, “Optical properties of dental hard tissues,” Ph.D. dissertation (University of Groningen, the Netherlands, 2001).

Adv. Dent. Res. (1)

B. Angmar-Månsson, J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res. 1, 14–20 (1987).
[PubMed]

Appl Opt. (1)

D. Fried, R. E. Glena, J. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl Opt. 34, 1278–1285 (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

Calcif. Tissue Res. (2)

D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and dental human enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
[CrossRef]

D. Spitzer, J. J. ten Bosch, “Luminescence quantum yields of sound and carious enamel,” Calcif. Tissue Res. 24, 249–251 (1977).
[CrossRef] [PubMed]

Caries Res. (3)

M. D. Lagerweij, E. de Josselin de Jong, J. M. ten-Cate, “The video camera compared with the densitometer as a scanning device for microradiography,” Caries Res. 28, 353–362 (1994).
[CrossRef] [PubMed]

J. Vaarkamp, J. J. ten Bosch, E. H. Verdonschot, “Propagation of light through human dental and dentine,” Caries Res. 29, 8–13 (1995).
[CrossRef]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robi, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Dentomaxillofac. Radiol. (1)

B. Angmar-Månsson, J. J. ten Bosch, “Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions,” Dentomaxillofac. Radiol. 30, 298–307 (2001).
[CrossRef] [PubMed]

J. Dent. Res. (1)

C. C. Ko, D. Tantbirojn, T. Wang, W. H. Douglas, “Optical scattering power for characterization of mineral loss,” J. Dent. Res. 79, 1584–1589 (2000).
[CrossRef] [PubMed]

Med. Laser Applic. (1)

R. Hibst, R. Paulus, A. Lussi, “Detection of occlusal caries by laser fluorescence: basic and clinical investigations,” Med. Laser Applic. 16, 205–214 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. E (1)

G. Popescu, C. Mujat, A. Dogariu, “Evidence of scattering anisotropy effects on boundary conditions of the diffusion equation,” Phys. Rev. E 61, 4523–4529 (2000).
[CrossRef]

Proc. Finn. Dent. Soc. (1)

J. Peltola, J. Wolf, “Fiber optics transillumination in caries diagnosis,” Proc. Finn. Dent. Soc. 77, 240–244 (1981).

Other (11)

G. K. Stookey, ed., Early Detection of Dental Caries II, Proceedings of the Fourth Annual Indiana Conference (Indiana University School of Dentistry, Indianapolis, Ind., 2000).

P. Rechmann, D. Fried, T. Hennig, eds., Lasers in Dentistry VIII, Proc. SPIE4610, (2002).

G. K. Stookey, ed., Early Detection of Dental Caries, Proceedings of the First Annual Indiana Conference (Indiana University School of Dentistry, Indianapolis, Ind., 1996).

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. Breunig, C. Q. Le, “Imaging caries lesions and lesion progression with polarization-sensitive optical coherence temography,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 113–124 (2002).
[CrossRef]

B. T. Amaechi, A. Podoleanu, G. Komarov, S. M. Higham, D. J. Jackson, “Optical coherence tomography for dental caries detection and analysis,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4610, 100–108 (2002).
[CrossRef]

C. Mujat, J. J. ten Bosch, A. Dogariu, “Optical pathlengths in dental caries lesions,” in Lasers in Dentistry VII, P. Rechmann, D. Fried, T. Hennig, eds., Proc. SPIE4249, 92–98 (2001).
[CrossRef]

J. J. ten Bosch, “Summary of research of quantitative light-induced fluorescence,” in Early Detection of Dental Caries II, Proceedings of the Fourth Annual Indiana Conference, G. Stookey, ed. (Indiana University School of Dentistry, Indianapolis, Ind., 2000), pp. 261–277.

J. J. ten Bosch, “Light scattering and related methods in caries diagnosis,” in Early Detection of Dental Caries I, Proceedings of the First Annual Indiana Conference, G. Stookey, ed. (Indiana University School of Dentistry, Indianapolis, Ind.1996), pp. 81–90.

G. N. Jenkins, The Physiology and Biochemistry of the Mouth (Blackwell Scientific, Oxford, U.K., 1978), pp 54–112.

R. Jones, D. Fried, “Attenuation of 1310-nm and 1550-nm laser light through sound enamel,” in Lasers in Dentistry VIII, P. Rechmann, D. Fried, T. Henning, eds., Proc. SPIE4610, 187–190 (2002).
[CrossRef]

J. R. Zijp, “Optical properties of dental hard tissues,” Ph.D. dissertation (University of Groningen, the Netherlands, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sound tooth. Typical reflectance versus optical path in the WW configuration. The specular reflectance peak is visible at short path lengths, and the noise level is indicated. Following the normalization procedure described in the text, the light path-length distribution is obtained as shown in the inset.

Fig. 2
Fig. 2

Caries lesions. Typical path-length-resolved reflectance for both deep and shallow lesions in the WW configuration. The inset presents the normalized path-length distributions P(s). Differences in the shape and extent of the P(s) distribution are clearly observed, depending on the depth of lesion.

Fig. 3
Fig. 3

Schematic description of the layered structure of a carious tooth. The overall thickness of the lesion and the enamel z = (z1 + z2) varies from 1 to 3 mm; In the MC simulation, the overall thickness z is 3 mm, and the photons that escape into the dentine are not followed.

Fig. 4
Fig. 4

Path-length distribution of light simulated in both deep and shallow lesions. The simulation parameters are given in Table 1. The collection was made over an area of 2500 μm2, with an acceptance angle smaller than 10°. The thickness of the shallow and deep lesion was 100 and 300 μm, respectively.

Fig. 5
Fig. 5

Average path length (WOW configuration) versus fluorescence loss when the discolored spots are included (dashed line, r = 0.76) and excluded (continuous line, r = 0.91).

Fig. 6
Fig. 6

(a) Schematic of the TMR slice cut through the lesion. The depth of the lesion d is defined as the distance over which the mineral content is smaller than the one corresponding to sound enamel. The demineralization ΔZ is the area obtained when the areas under the mineral percentage distributions of sound enamel and demineralized tissue are subtracted. (b) Microradiograph of a measured tooth and the associated plot of mineral loss versus thickness.

Fig. 7
Fig. 7

Average path length (WOW configuration) for different caries lesions as a function (a) of the lesion depth and (b) of demineralization.

Tables (2)

Tables Icon

Table 1 Parameters Used in the MC Simulationa

Tables Icon

Table 2 OPS-QLF and OPS-TMR Correlation Factors

Metrics