Abstract

An optical lever was designed for studying physical displacements associated with electrophysiological activation of lobster nerve bundles. Stimulation current pulses generated a compound action potential volley, and upward physical displacements of <1 nm were recorded. The swelling displacement propagated in the same direction as the action potential volley, occurred simultaneously with the action potentials, and required 10 ms to relax after the electrical potential was restored. For comparison with previous reports, we also recorded the displacement of Nitella internodes associated with electrical stimulation. We found that a rapid swelling displacement (∼10 nm) was followed by a larger, slow-shrinking displacement (∼100 nm).

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Rector, G. R. Poe, M. P. Kristensen, R. M. Harper, “Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation,” J. Neurophysiol. 78, 1707–1713 (1997).
    [PubMed]
  2. D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activity in vivo,” J. Neurosci. Methods 91, 135–145 (1999).
    [CrossRef] [PubMed]
  3. D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
    [CrossRef] [PubMed]
  4. L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
    [CrossRef] [PubMed]
  5. L. B. Cohen, R. D. Keynes, “Changes in light scattering associated with the action potential in crab nerves,” J. Physiol. (Lond) 212, 259–275 (1971).
  6. L. B. Cohen, R. D. Keynes, L. Landowne, “Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components,” J. Physiol. (Lond) 224, 701–725 (1972).
  7. M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
    [CrossRef] [PubMed]
  8. G. Gratton, M. Fabiani, “The event-related optical signal: a new tool for studying brain function,” Int. J. Psychophysiol. 42, 15–27 (2001)
    [CrossRef]
  9. M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
    [CrossRef] [PubMed]
  10. A. Darquie, J.-B. Poline, C. Poupon, H. Saint-Jalmes, D. Le Bihan, “Transient decrease in water diffusion observed in human occipital cortex during visual stimulation,” Proc. Nat. Acad. Sci. USA. 98, 9391–9395 (2001).
    [CrossRef] [PubMed]
  11. R. Sandlin, L. Lerman, W. Barry, I. Tasaki, “Application of interferometry to physiological studies of excitable tissue,” Nature 217, 575–576 (1968).
    [CrossRef] [PubMed]
  12. K. Iwasa, I. Tasaki, R. C. Gibbons, “Swelling of nerve fibers associated with action potentials,” Science 210, 338–339 (1980).
    [CrossRef] [PubMed]
  13. I. Tasaki, K. Iwasa, “Further studies of rapid mechanical changes in squid giant axon associated with action potential production,” Jpn. J. Physiol. 32, 505–518 (1982).
    [CrossRef] [PubMed]
  14. I. Tasaki, P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188, 559–564 (1992).
    [CrossRef] [PubMed]
  15. A Watanabe, “Mechanical, thermal, and optical changes of the nerve membrane associated with excitation,” Jpn. J. Physiol. 36, 625–643 (1986).
    [CrossRef] [PubMed]
  16. L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53, 373–418 (1973).
    [PubMed]
  17. D. W. Hochman, “Intrinsic optical changes in neuronal tissue: basic mechanisms,” Neurosurg. Clin. N. Am. 8, 393–412 (1997).
    [PubMed]
  18. D. Landowne, J. B. Larsen, R. T. Taylor, “Colchicine alters the nerve birefringence response,” Science 220, 953–954 (1983).
    [CrossRef] [PubMed]
  19. R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundle microtubules,” Biophys. J. 74, 645–654 (1998).
    [CrossRef] [PubMed]
  20. D. K. Hill, “The volume changes resulting from stimulation of a giant nerve fiber,” J. Physiol. (Lond) 111, 304–327 (1950)
  21. I. Tasaki, P. M. Byrne, “Demonstration of heat production associated with spreading depression in the amphibian retina,” Biochem. Biophys. Res. Commun. 174, 293–297 (1991).
    [CrossRef] [PubMed]
  22. I. Tasaki, P. M. Byrne, “Thermal and mechanical responses of the amphibian skin to nerve stimulation,” Jpn. J. Physiol. 41, 576–576 (1991).
    [CrossRef]
  23. I. Tasaki, A. Warashina, H. Pant, “Studies of light emission, absorption and energy transfer in nerve membranes labeled with flourescent probes,” Biophys Chem. 4, 1–13 (1976).
    [CrossRef] [PubMed]
  24. A. Watanabe, “Optical activity signal recorded from nerve fibers using a photoelastic modulator,” Biomed. Res. (Suppl.) 7, 21–25 (1986).
  25. D. K. Hill, R. D. Keynes, “Opacity changes in stimulated nerve fiber,” J. Physiol. (Lond.) 108, 278–281 (1949).
  26. I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43, (Suppl) 1, 67–75 (1993).
  27. F. Conti, I. Tasaki, E. Wanke, “Fluorescence signals in ANS-stained squid giant axons during voltage clamp,” Biophysik 8, 58–70 (1971).
    [CrossRef]
  28. I. Tasaki, A. Watanabe, M. Hallett, “Fluorescence of squid axon membrane labeled with hydrophobic probes,” J. Membrane Biol. 8, 109–132 (1972).
    [CrossRef]
  29. L. J. Mullins, “Efflux of chloride ions during the action potential of Nitella,” Nature 196, 986–987 (1962).
    [CrossRef] [PubMed]
  30. R. Wayne, “Excitability in plant cells,” Am. Scientist 81, 140–151 (1993).
  31. I. Tasaki, “Rapid structural changes in nerve fibers and cells associated with their excitation processes,” Jpn. J. Physiol. 49, 125–138 (1999).
    [CrossRef] [PubMed]
  32. I. Tasaki, “Spread of discrete structural changes in a synthetic polyanionic gel: a model of propagation of a nerve impulse,” J. Theor. Biol. 218, 497–505 (2002).
    [PubMed]
  33. J. Mosbacher, M. Langer, J. K. H. Horber, F. Sachs, “Voltage-dependent membrane displacements measured with atomic force microscopy.” J. Gen. Physiol. 111, 65–74 (1998).
    [CrossRef] [PubMed]
  34. J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
    [CrossRef] [PubMed]

2002 (2)

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
[CrossRef] [PubMed]

I. Tasaki, “Spread of discrete structural changes in a synthetic polyanionic gel: a model of propagation of a nerve impulse,” J. Theor. Biol. 218, 497–505 (2002).
[PubMed]

2001 (3)

G. Gratton, M. Fabiani, “The event-related optical signal: a new tool for studying brain function,” Int. J. Psychophysiol. 42, 15–27 (2001)
[CrossRef]

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

A. Darquie, J.-B. Poline, C. Poupon, H. Saint-Jalmes, D. Le Bihan, “Transient decrease in water diffusion observed in human occipital cortex during visual stimulation,” Proc. Nat. Acad. Sci. USA. 98, 9391–9395 (2001).
[CrossRef] [PubMed]

2000 (2)

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
[CrossRef] [PubMed]

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

1999 (2)

I. Tasaki, “Rapid structural changes in nerve fibers and cells associated with their excitation processes,” Jpn. J. Physiol. 49, 125–138 (1999).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activity in vivo,” J. Neurosci. Methods 91, 135–145 (1999).
[CrossRef] [PubMed]

1998 (2)

J. Mosbacher, M. Langer, J. K. H. Horber, F. Sachs, “Voltage-dependent membrane displacements measured with atomic force microscopy.” J. Gen. Physiol. 111, 65–74 (1998).
[CrossRef] [PubMed]

R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundle microtubules,” Biophys. J. 74, 645–654 (1998).
[CrossRef] [PubMed]

1997 (2)

D. M. Rector, G. R. Poe, M. P. Kristensen, R. M. Harper, “Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation,” J. Neurophysiol. 78, 1707–1713 (1997).
[PubMed]

D. W. Hochman, “Intrinsic optical changes in neuronal tissue: basic mechanisms,” Neurosurg. Clin. N. Am. 8, 393–412 (1997).
[PubMed]

1993 (2)

I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43, (Suppl) 1, 67–75 (1993).

R. Wayne, “Excitability in plant cells,” Am. Scientist 81, 140–151 (1993).

1992 (1)

I. Tasaki, P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188, 559–564 (1992).
[CrossRef] [PubMed]

1991 (2)

I. Tasaki, P. M. Byrne, “Demonstration of heat production associated with spreading depression in the amphibian retina,” Biochem. Biophys. Res. Commun. 174, 293–297 (1991).
[CrossRef] [PubMed]

I. Tasaki, P. M. Byrne, “Thermal and mechanical responses of the amphibian skin to nerve stimulation,” Jpn. J. Physiol. 41, 576–576 (1991).
[CrossRef]

1986 (2)

A. Watanabe, “Optical activity signal recorded from nerve fibers using a photoelastic modulator,” Biomed. Res. (Suppl.) 7, 21–25 (1986).

A Watanabe, “Mechanical, thermal, and optical changes of the nerve membrane associated with excitation,” Jpn. J. Physiol. 36, 625–643 (1986).
[CrossRef] [PubMed]

1983 (1)

D. Landowne, J. B. Larsen, R. T. Taylor, “Colchicine alters the nerve birefringence response,” Science 220, 953–954 (1983).
[CrossRef] [PubMed]

1982 (1)

I. Tasaki, K. Iwasa, “Further studies of rapid mechanical changes in squid giant axon associated with action potential production,” Jpn. J. Physiol. 32, 505–518 (1982).
[CrossRef] [PubMed]

1980 (1)

K. Iwasa, I. Tasaki, R. C. Gibbons, “Swelling of nerve fibers associated with action potentials,” Science 210, 338–339 (1980).
[CrossRef] [PubMed]

1976 (1)

I. Tasaki, A. Warashina, H. Pant, “Studies of light emission, absorption and energy transfer in nerve membranes labeled with flourescent probes,” Biophys Chem. 4, 1–13 (1976).
[CrossRef] [PubMed]

1973 (1)

L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53, 373–418 (1973).
[PubMed]

1972 (2)

L. B. Cohen, R. D. Keynes, L. Landowne, “Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components,” J. Physiol. (Lond) 224, 701–725 (1972).

I. Tasaki, A. Watanabe, M. Hallett, “Fluorescence of squid axon membrane labeled with hydrophobic probes,” J. Membrane Biol. 8, 109–132 (1972).
[CrossRef]

1971 (2)

F. Conti, I. Tasaki, E. Wanke, “Fluorescence signals in ANS-stained squid giant axons during voltage clamp,” Biophysik 8, 58–70 (1971).
[CrossRef]

L. B. Cohen, R. D. Keynes, “Changes in light scattering associated with the action potential in crab nerves,” J. Physiol. (Lond) 212, 259–275 (1971).

1968 (2)

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

R. Sandlin, L. Lerman, W. Barry, I. Tasaki, “Application of interferometry to physiological studies of excitable tissue,” Nature 217, 575–576 (1968).
[CrossRef] [PubMed]

1962 (1)

L. J. Mullins, “Efflux of chloride ions during the action potential of Nitella,” Nature 196, 986–987 (1962).
[CrossRef] [PubMed]

1950 (1)

D. K. Hill, “The volume changes resulting from stimulation of a giant nerve fiber,” J. Physiol. (Lond) 111, 304–327 (1950)

1949 (1)

D. K. Hill, R. D. Keynes, “Opacity changes in stimulated nerve fiber,” J. Physiol. (Lond.) 108, 278–281 (1949).

Barry, W.

R. Sandlin, L. Lerman, W. Barry, I. Tasaki, “Application of interferometry to physiological studies of excitable tissue,” Nature 217, 575–576 (1968).
[CrossRef] [PubMed]

Byrne, P. M.

I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43, (Suppl) 1, 67–75 (1993).

I. Tasaki, P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188, 559–564 (1992).
[CrossRef] [PubMed]

I. Tasaki, P. M. Byrne, “Demonstration of heat production associated with spreading depression in the amphibian retina,” Biochem. Biophys. Res. Commun. 174, 293–297 (1991).
[CrossRef] [PubMed]

I. Tasaki, P. M. Byrne, “Thermal and mechanical responses of the amphibian skin to nerve stimulation,” Jpn. J. Physiol. 41, 576–576 (1991).
[CrossRef]

Choi, J.-H.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
[CrossRef] [PubMed]

Cohen, L. B.

L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53, 373–418 (1973).
[PubMed]

L. B. Cohen, R. D. Keynes, L. Landowne, “Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components,” J. Physiol. (Lond) 224, 701–725 (1972).

L. B. Cohen, R. D. Keynes, “Changes in light scattering associated with the action potential in crab nerves,” J. Physiol. (Lond) 212, 259–275 (1971).

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Conti, F.

F. Conti, I. Tasaki, E. Wanke, “Fluorescence signals in ANS-stained squid giant axons during voltage clamp,” Biophysik 8, 58–70 (1971).
[CrossRef]

Curio, G.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Darquie, A.

A. Darquie, J.-B. Poline, C. Poupon, H. Saint-Jalmes, D. Le Bihan, “Transient decrease in water diffusion observed in human occipital cortex during visual stimulation,” Proc. Nat. Acad. Sci. USA. 98, 9391–9395 (2001).
[CrossRef] [PubMed]

Dirnagl, U.

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
[CrossRef] [PubMed]

Fabiani, M.

G. Gratton, M. Fabiani, “The event-related optical signal: a new tool for studying brain function,” Int. J. Psychophysiol. 42, 15–27 (2001)
[CrossRef]

George, J. S.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activity in vivo,” J. Neurosci. Methods 91, 135–145 (1999).
[CrossRef] [PubMed]

Gibbons, R. C.

K. Iwasa, I. Tasaki, R. C. Gibbons, “Swelling of nerve fibers associated with action potentials,” Science 210, 338–339 (1980).
[CrossRef] [PubMed]

Gold, L.

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
[CrossRef] [PubMed]

Gratton, E.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
[CrossRef] [PubMed]

Gratton, G.

G. Gratton, M. Fabiani, “The event-related optical signal: a new tool for studying brain function,” Int. J. Psychophysiol. 42, 15–27 (2001)
[CrossRef]

Hallett, M.

I. Tasaki, A. Watanabe, M. Hallett, “Fluorescence of squid axon membrane labeled with hydrophobic probes,” J. Membrane Biol. 8, 109–132 (1972).
[CrossRef]

Harper, R. M.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

D. M. Rector, G. R. Poe, M. P. Kristensen, R. M. Harper, “Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation,” J. Neurophysiol. 78, 1707–1713 (1997).
[PubMed]

Hill, D. K.

D. K. Hill, “The volume changes resulting from stimulation of a giant nerve fiber,” J. Physiol. (Lond) 111, 304–327 (1950)

D. K. Hill, R. D. Keynes, “Opacity changes in stimulated nerve fiber,” J. Physiol. (Lond.) 108, 278–281 (1949).

Hille, B.

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Hochman, D. W.

D. W. Hochman, “Intrinsic optical changes in neuronal tissue: basic mechanisms,” Neurosurg. Clin. N. Am. 8, 393–412 (1997).
[PubMed]

Horber, J. K. H.

J. Mosbacher, M. Langer, J. K. H. Horber, F. Sachs, “Voltage-dependent membrane displacements measured with atomic force microscopy.” J. Gen. Physiol. 111, 65–74 (1998).
[CrossRef] [PubMed]

Iwasa, K.

I. Tasaki, K. Iwasa, “Further studies of rapid mechanical changes in squid giant axon associated with action potential production,” Jpn. J. Physiol. 32, 505–518 (1982).
[CrossRef] [PubMed]

K. Iwasa, I. Tasaki, R. C. Gibbons, “Swelling of nerve fibers associated with action potentials,” Science 210, 338–339 (1980).
[CrossRef] [PubMed]

Keynes, R. D.

L. B. Cohen, R. D. Keynes, L. Landowne, “Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components,” J. Physiol. (Lond) 224, 701–725 (1972).

L. B. Cohen, R. D. Keynes, “Changes in light scattering associated with the action potential in crab nerves,” J. Physiol. (Lond) 212, 259–275 (1971).

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

D. K. Hill, R. D. Keynes, “Opacity changes in stimulated nerve fiber,” J. Physiol. (Lond.) 108, 278–281 (1949).

Kohl, M.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
[CrossRef] [PubMed]

Kristensen, M. P.

D. M. Rector, G. R. Poe, M. P. Kristensen, R. M. Harper, “Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation,” J. Neurophysiol. 78, 1707–1713 (1997).
[PubMed]

Kuhl, M.

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
[CrossRef] [PubMed]

Landowne, D.

D. Landowne, J. B. Larsen, R. T. Taylor, “Colchicine alters the nerve birefringence response,” Science 220, 953–954 (1983).
[CrossRef] [PubMed]

Landowne, L.

L. B. Cohen, R. D. Keynes, L. Landowne, “Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components,” J. Physiol. (Lond) 224, 701–725 (1972).

Langer, M.

J. Mosbacher, M. Langer, J. K. H. Horber, F. Sachs, “Voltage-dependent membrane displacements measured with atomic force microscopy.” J. Gen. Physiol. 111, 65–74 (1998).
[CrossRef] [PubMed]

Larsen, J. B.

D. Landowne, J. B. Larsen, R. T. Taylor, “Colchicine alters the nerve birefringence response,” Science 220, 953–954 (1983).
[CrossRef] [PubMed]

Le Bihan, D.

A. Darquie, J.-B. Poline, C. Poupon, H. Saint-Jalmes, D. Le Bihan, “Transient decrease in water diffusion observed in human occipital cortex during visual stimulation,” Proc. Nat. Acad. Sci. USA. 98, 9391–9395 (2001).
[CrossRef] [PubMed]

Lerman, L.

R. Sandlin, L. Lerman, W. Barry, I. Tasaki, “Application of interferometry to physiological studies of excitable tissue,” Nature 217, 575–576 (1968).
[CrossRef] [PubMed]

Lindauer, U.

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
[CrossRef] [PubMed]

Michalos, A.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
[CrossRef] [PubMed]

Mosbacher, J.

J. Mosbacher, M. Langer, J. K. H. Horber, F. Sachs, “Voltage-dependent membrane displacements measured with atomic force microscopy.” J. Gen. Physiol. 111, 65–74 (1998).
[CrossRef] [PubMed]

Mullins, L. J.

L. J. Mullins, “Efflux of chloride ions during the action potential of Nitella,” Nature 196, 986–987 (1962).
[CrossRef] [PubMed]

Obrig, H.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Oldenbourg, R.

R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundle microtubules,” Biophys. J. 74, 645–654 (1998).
[CrossRef] [PubMed]

Pant, H.

I. Tasaki, A. Warashina, H. Pant, “Studies of light emission, absorption and energy transfer in nerve membranes labeled with flourescent probes,” Biophys Chem. 4, 1–13 (1976).
[CrossRef] [PubMed]

Paunescu, L. A.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
[CrossRef] [PubMed]

Poe, G. R.

D. M. Rector, G. R. Poe, M. P. Kristensen, R. M. Harper, “Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation,” J. Neurophysiol. 78, 1707–1713 (1997).
[PubMed]

Poline, J.-B.

A. Darquie, J.-B. Poline, C. Poupon, H. Saint-Jalmes, D. Le Bihan, “Transient decrease in water diffusion observed in human occipital cortex during visual stimulation,” Proc. Nat. Acad. Sci. USA. 98, 9391–9395 (2001).
[CrossRef] [PubMed]

Poupon, C.

A. Darquie, J.-B. Poline, C. Poupon, H. Saint-Jalmes, D. Le Bihan, “Transient decrease in water diffusion observed in human occipital cortex during visual stimulation,” Proc. Nat. Acad. Sci. USA. 98, 9391–9395 (2001).
[CrossRef] [PubMed]

Rector, D. M.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activity in vivo,” J. Neurosci. Methods 91, 135–145 (1999).
[CrossRef] [PubMed]

D. M. Rector, G. R. Poe, M. P. Kristensen, R. M. Harper, “Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation,” J. Neurophysiol. 78, 1707–1713 (1997).
[PubMed]

Rinneberg, H.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Rogers, R. F.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activity in vivo,” J. Neurosci. Methods 91, 135–145 (1999).
[CrossRef] [PubMed]

Royl, G.

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
[CrossRef] [PubMed]

Sachs, F.

J. Mosbacher, M. Langer, J. K. H. Horber, F. Sachs, “Voltage-dependent membrane displacements measured with atomic force microscopy.” J. Gen. Physiol. 111, 65–74 (1998).
[CrossRef] [PubMed]

Saint-Jalmes, H.

A. Darquie, J.-B. Poline, C. Poupon, H. Saint-Jalmes, D. Le Bihan, “Transient decrease in water diffusion observed in human occipital cortex during visual stimulation,” Proc. Nat. Acad. Sci. USA. 98, 9391–9395 (2001).
[CrossRef] [PubMed]

Salmon, E. D.

R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundle microtubules,” Biophys. J. 74, 645–654 (1998).
[CrossRef] [PubMed]

Sandlin, R.

R. Sandlin, L. Lerman, W. Barry, I. Tasaki, “Application of interferometry to physiological studies of excitable tissue,” Nature 217, 575–576 (1968).
[CrossRef] [PubMed]

Schwaber, J. S.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

Steinbrink, J.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Syre, F.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Tasaki, I.

I. Tasaki, “Spread of discrete structural changes in a synthetic polyanionic gel: a model of propagation of a nerve impulse,” J. Theor. Biol. 218, 497–505 (2002).
[PubMed]

I. Tasaki, “Rapid structural changes in nerve fibers and cells associated with their excitation processes,” Jpn. J. Physiol. 49, 125–138 (1999).
[CrossRef] [PubMed]

I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43, (Suppl) 1, 67–75 (1993).

I. Tasaki, P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188, 559–564 (1992).
[CrossRef] [PubMed]

I. Tasaki, P. M. Byrne, “Demonstration of heat production associated with spreading depression in the amphibian retina,” Biochem. Biophys. Res. Commun. 174, 293–297 (1991).
[CrossRef] [PubMed]

I. Tasaki, P. M. Byrne, “Thermal and mechanical responses of the amphibian skin to nerve stimulation,” Jpn. J. Physiol. 41, 576–576 (1991).
[CrossRef]

I. Tasaki, K. Iwasa, “Further studies of rapid mechanical changes in squid giant axon associated with action potential production,” Jpn. J. Physiol. 32, 505–518 (1982).
[CrossRef] [PubMed]

K. Iwasa, I. Tasaki, R. C. Gibbons, “Swelling of nerve fibers associated with action potentials,” Science 210, 338–339 (1980).
[CrossRef] [PubMed]

I. Tasaki, A. Warashina, H. Pant, “Studies of light emission, absorption and energy transfer in nerve membranes labeled with flourescent probes,” Biophys Chem. 4, 1–13 (1976).
[CrossRef] [PubMed]

I. Tasaki, A. Watanabe, M. Hallett, “Fluorescence of squid axon membrane labeled with hydrophobic probes,” J. Membrane Biol. 8, 109–132 (1972).
[CrossRef]

F. Conti, I. Tasaki, E. Wanke, “Fluorescence signals in ANS-stained squid giant axons during voltage clamp,” Biophysik 8, 58–70 (1971).
[CrossRef]

R. Sandlin, L. Lerman, W. Barry, I. Tasaki, “Application of interferometry to physiological studies of excitable tissue,” Nature 217, 575–576 (1968).
[CrossRef] [PubMed]

Taylor, R. T.

D. Landowne, J. B. Larsen, R. T. Taylor, “Colchicine alters the nerve birefringence response,” Science 220, 953–954 (1983).
[CrossRef] [PubMed]

Thomas, F.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Toronov, V.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
[CrossRef] [PubMed]

Tran, P. T.

R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundle microtubules,” Biophys. J. 74, 645–654 (1998).
[CrossRef] [PubMed]

Villringer, A.

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
[CrossRef] [PubMed]

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Wabnitz, H.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Wanke, E.

F. Conti, I. Tasaki, E. Wanke, “Fluorescence signals in ANS-stained squid giant axons during voltage clamp,” Biophysik 8, 58–70 (1971).
[CrossRef]

Warashina, A.

I. Tasaki, A. Warashina, H. Pant, “Studies of light emission, absorption and energy transfer in nerve membranes labeled with flourescent probes,” Biophys Chem. 4, 1–13 (1976).
[CrossRef] [PubMed]

Watanabe, A

A Watanabe, “Mechanical, thermal, and optical changes of the nerve membrane associated with excitation,” Jpn. J. Physiol. 36, 625–643 (1986).
[CrossRef] [PubMed]

Watanabe, A.

A. Watanabe, “Optical activity signal recorded from nerve fibers using a photoelastic modulator,” Biomed. Res. (Suppl.) 7, 21–25 (1986).

I. Tasaki, A. Watanabe, M. Hallett, “Fluorescence of squid axon membrane labeled with hydrophobic probes,” J. Membrane Biol. 8, 109–132 (1972).
[CrossRef]

Wayne, R.

R. Wayne, “Excitability in plant cells,” Am. Scientist 81, 140–151 (1993).

Wolf, M.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
[CrossRef] [PubMed]

Wolf, U.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
[CrossRef] [PubMed]

Am. Scientist (1)

R. Wayne, “Excitability in plant cells,” Am. Scientist 81, 140–151 (1993).

Biochem. Biophys. Res. Commun. (2)

I. Tasaki, P. M. Byrne, “Demonstration of heat production associated with spreading depression in the amphibian retina,” Biochem. Biophys. Res. Commun. 174, 293–297 (1991).
[CrossRef] [PubMed]

I. Tasaki, P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188, 559–564 (1992).
[CrossRef] [PubMed]

Biomed. Res. (Suppl.) (1)

A. Watanabe, “Optical activity signal recorded from nerve fibers using a photoelastic modulator,” Biomed. Res. (Suppl.) 7, 21–25 (1986).

Biophys Chem. (1)

I. Tasaki, A. Warashina, H. Pant, “Studies of light emission, absorption and energy transfer in nerve membranes labeled with flourescent probes,” Biophys Chem. 4, 1–13 (1976).
[CrossRef] [PubMed]

Biophys. J. (1)

R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundle microtubules,” Biophys. J. 74, 645–654 (1998).
[CrossRef] [PubMed]

Biophysik (1)

F. Conti, I. Tasaki, E. Wanke, “Fluorescence signals in ANS-stained squid giant axons during voltage clamp,” Biophysik 8, 58–70 (1971).
[CrossRef]

Int. J. Psychophysiol. (1)

G. Gratton, M. Fabiani, “The event-related optical signal: a new tool for studying brain function,” Int. J. Psychophysiol. 42, 15–27 (2001)
[CrossRef]

J. Gen. Physiol. (1)

J. Mosbacher, M. Langer, J. K. H. Horber, F. Sachs, “Voltage-dependent membrane displacements measured with atomic force microscopy.” J. Gen. Physiol. 111, 65–74 (1998).
[CrossRef] [PubMed]

J. Membrane Biol. (1)

I. Tasaki, A. Watanabe, M. Hallett, “Fluorescence of squid axon membrane labeled with hydrophobic probes,” J. Membrane Biol. 8, 109–132 (1972).
[CrossRef]

J. Neurophysiol. (1)

D. M. Rector, G. R. Poe, M. P. Kristensen, R. M. Harper, “Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation,” J. Neurophysiol. 78, 1707–1713 (1997).
[PubMed]

J. Neurosci. Methods (1)

D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activity in vivo,” J. Neurosci. Methods 91, 135–145 (1999).
[CrossRef] [PubMed]

J. Physiol. (Lond) (3)

L. B. Cohen, R. D. Keynes, “Changes in light scattering associated with the action potential in crab nerves,” J. Physiol. (Lond) 212, 259–275 (1971).

L. B. Cohen, R. D. Keynes, L. Landowne, “Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components,” J. Physiol. (Lond) 224, 701–725 (1972).

D. K. Hill, “The volume changes resulting from stimulation of a giant nerve fiber,” J. Physiol. (Lond) 111, 304–327 (1950)

J. Physiol. (Lond.) (1)

D. K. Hill, R. D. Keynes, “Opacity changes in stimulated nerve fiber,” J. Physiol. (Lond.) 108, 278–281 (1949).

J. Theor. Biol. (1)

I. Tasaki, “Spread of discrete structural changes in a synthetic polyanionic gel: a model of propagation of a nerve impulse,” J. Theor. Biol. 218, 497–505 (2002).
[PubMed]

Jpn. J. Physiol. (5)

I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43, (Suppl) 1, 67–75 (1993).

I. Tasaki, P. M. Byrne, “Thermal and mechanical responses of the amphibian skin to nerve stimulation,” Jpn. J. Physiol. 41, 576–576 (1991).
[CrossRef]

I. Tasaki, “Rapid structural changes in nerve fibers and cells associated with their excitation processes,” Jpn. J. Physiol. 49, 125–138 (1999).
[CrossRef] [PubMed]

A Watanabe, “Mechanical, thermal, and optical changes of the nerve membrane associated with excitation,” Jpn. J. Physiol. 36, 625–643 (1986).
[CrossRef] [PubMed]

I. Tasaki, K. Iwasa, “Further studies of rapid mechanical changes in squid giant axon associated with action potential production,” Jpn. J. Physiol. 32, 505–518 (1982).
[CrossRef] [PubMed]

Nature (3)

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

R. Sandlin, L. Lerman, W. Barry, I. Tasaki, “Application of interferometry to physiological studies of excitable tissue,” Nature 217, 575–576 (1968).
[CrossRef] [PubMed]

L. J. Mullins, “Efflux of chloride ions during the action potential of Nitella,” Nature 196, 986–987 (1962).
[CrossRef] [PubMed]

Neuroimage (2)

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J.-H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16, 704–712 (2002)
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

Neurosci. Lett. (1)

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Neurosurg. Clin. N. Am. (1)

D. W. Hochman, “Intrinsic optical changes in neuronal tissue: basic mechanisms,” Neurosurg. Clin. N. Am. 8, 393–412 (1997).
[PubMed]

Phys. Med. Biol. (1)

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45, 3749–3764 (2000).
[CrossRef] [PubMed]

Physiol. Rev. (1)

L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53, 373–418 (1973).
[PubMed]

Proc. Nat. Acad. Sci. USA. (1)

A. Darquie, J.-B. Poline, C. Poupon, H. Saint-Jalmes, D. Le Bihan, “Transient decrease in water diffusion observed in human occipital cortex during visual stimulation,” Proc. Nat. Acad. Sci. USA. 98, 9391–9395 (2001).
[CrossRef] [PubMed]

Science (2)

K. Iwasa, I. Tasaki, R. C. Gibbons, “Swelling of nerve fibers associated with action potentials,” Science 210, 338–339 (1980).
[CrossRef] [PubMed]

D. Landowne, J. B. Larsen, R. T. Taylor, “Colchicine alters the nerve birefringence response,” Science 220, 953–954 (1983).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of the optical lever (OL) shows the light path of the experimental setup. A beam expander consists of two lenses, L1 (f = -5 mm) and L2 (f = 200) and a 8-mm-diameter aperture (A). M1, M2, and M3, are mirrors that are used to redirect the laser. One edge of the OL mirror rests on a knife-edge, and the opposite edge rests on the surface of the nerve bundle. The PSD is a quadrant photodiode. The nerve is located at the focal point of lens L3 (f = 200); the distance between the PSD and the nerve is approximately 200 mm, so the light spot at the photosensitive area of the PSD is approximately 8 mm in diameter.

Fig. 2
Fig. 2

Quadrant photodiode consists of four isolated photosensitive areas A, B, C, and D. The photodiode current signals were converted into voltage signals with four current-to-voltage converters (I–V). The sum of all four photodiodes (R) was recorded as the reference voltage. High-pass filters were used to cut off frequencies below 0.1 or 0.01 Hz. The output signals were amplified, and the 10-kHz low-pass filters filtered high-frequency noise. The AC1 and AC2 outputs were proportional to the displacement of nerve bundle. The S output is the difference of AC1 and AC2 signals.

Fig. 3
Fig. 3

Illustration of the laser beam on the photodiode shows the spot colored in gray is approximately 4 mm in radius (r). The displacement (y) of the spot is proportional to the displacement of the nerve surface.

Fig. 4
Fig. 4

Simple depiction of the path of reflected light perturbed by the propagation of the swelling wave when the mirror is placed entirely on the nerve. (a) No nerve swelling. (b) Swelling wave is at the left of the mirror center. (c) Swelling wave is at the right of the mirror center. In (b) and (c), the solid arrows indicate the observed path of light propagation. The dashed line indicates the path of light propagation with no nerve swelling.

Fig. 5
Fig. 5

Diagram illustrates the design of the chamber used for lobster nerves and Nitella internodes. The width and length of the middle channel are 1 and 10 mm, respectively. During the experiment the area with gray color was filled with ringer or pond water, and vaseline was used to isolate the electrodes. In the side channel, all of the nerve bundle or Nitella internode was immersed, whereas in the middle channel, the bottom of the nerve bundle or Nitella internode was immersed in Ringer or pond water, but the top was open to air.

Fig. 6
Fig. 6

Time-triggered average plots show electrical and displacement signals. The thin lines are electrical potential; the thick lines show the swelling displacements x; and the gray backgrounds are x ± SEM (i.e., the Standard Error of the Mean: SEM = SD/N 1/2, where N is the number of the trials). This measure is dominated by low frequency noise. When the low-frequency component is removed by means of high-pass filtering or ac coupling, or by numerical resetting of the baseline dc level, the shaded band is approximately equal to the noise within the measurement passband. Thus the signal is detectable, but not statistically significant, in single trials. The residual noise in the noise in the averaged response is on order of 0.1 nm, and the observed 0.5-nm responses are highly significant. For both (a) and (b) the nerve bundles were stimulated with 0.1-ms long current pulses. The current amplitudes are 3.5 and 2.4 mA (1.019 Hz) for (a) and (b), respectively. The records were taken from average of 265 and 101 signals, respectively. The acquisition speed was 62.5 kHz; the high-pass filters were 0.1 Hz, and the gain (M) was 4000. Stimulus occurred at the arrow.

Fig. 7
Fig. 7

Displacement signals associated with the propagation of the micromechanical response. When the mirror was placed entirely on the nerve, we saw a fast upward deflection and a slower downward displacement. The black solid curves are electrical potential, and the solid gray curves show the change of output signal S. The nerve bundle was stimulated with 0.1-ms-long, 3-mA (1 Hz) current pulses in the chamber described in Fig. 5. The record was taken from average of 100 signals. The acquisition speed was 62.5 kHz; the high-pass filters were 0.1 Hz; and the gain M was 4000. We estimate the signal returns to baseline after 30 ms. Stimulus occurred at the arrow.

Fig. 8
Fig. 8

Optical lever measurements of micromechanical displacement of Nitella internodes during electrical excitation. (a) A 32-s signal sequence from Nitella stimulation shows displacement of the internode associated with stimulation. The acquisition speed was 625 Hz; the high-pass filters used for nerve bundle were 0.01 Hz; and the gain M was 30. The shrinking peak was approximately 120 nm. (b) A 1-s signal sequence shows an initial 10-nm swelling displacement associated with stimulation. In the lower panel the acquisition speed was 62.5 KHz; the high-pass filters used for nerve bundle were 0.1 Hz; and the gain M was 300. The trace returns to baseline more quickly than expected because of the short time constant on the high-pass filter. Stimulus occurred at the arrow. Prestimulus baseline noise was <2 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y=2dx/l.
4My/πr=S/R,
x=πSlr/8RMd.

Metrics