Abstract

It is important for near-infrared spectroscopy (NIRS) and imaging to estimate the sensitivity of the detected signal to the change in hemoglobin that results from brain activation and the volume of tissue interrogated for a specific source-detector fiber spacing. In this study light propagation in adult head models is predicted by Monte Carlo simulation to investigate the effect of the superficial tissue thickness on the partial optical path length in the brain and on the spatial sensitivity profile. In the case of source-detector spacing of 30 mm, the partial optical path length depends mainly on the depth of the inner skull surface whereas the spatial sensitivity profile is significantly affected by the thickness of the cerebrospinal fluid layer. The mean optical path length that can be measured by time-resolved experiments increases when the skull thickness increases whereas the partial mean optical path length in the brain decreases when the skull thickness increases. These results indicate that it is not appropriate to use the mean optical path length as an alternative to the partial optical path length to compensate the NIRS signal for the difference in sensitivity caused by variation of the superficial tissue thickness.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
    [CrossRef] [PubMed]
  2. S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
    [CrossRef] [PubMed]
  3. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
    [CrossRef] [PubMed]
  4. T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
    [CrossRef] [PubMed]
  5. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express2, 411–423 (1998), http://www.opticsexpress.org .
    [CrossRef]
  6. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
    [CrossRef] [PubMed]
  7. E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
    [CrossRef] [PubMed]
  8. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
    [CrossRef] [PubMed]
  9. M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
    [CrossRef] [PubMed]
  10. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
    [CrossRef] [PubMed]
  11. H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
    [CrossRef]
  12. K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
    [CrossRef] [PubMed]
  13. M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
    [CrossRef] [PubMed]
  14. J. Plucinski, A. F. Frydrychowski, J. Kaczmarek, W. Juzwa, “Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space,” J. Biomed. Opt. 5, 291–299 (2000).
    [CrossRef] [PubMed]
  15. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef] [PubMed]
  16. M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
    [CrossRef] [PubMed]
  17. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
    [CrossRef]
  18. E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
    [CrossRef] [PubMed]
  19. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [CrossRef] [PubMed]
  20. B. C. Wilson, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  21. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
    [CrossRef] [PubMed]
  22. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemogynamics,” Neuroimage 13, 76–90 (2001).
    [CrossRef] [PubMed]

2003 (1)

2002 (3)

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
[CrossRef] [PubMed]

2001 (1)

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemogynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

2000 (3)

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

J. Plucinski, A. F. Frydrychowski, J. Kaczmarek, W. Juzwa, “Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space,” J. Biomed. Opt. 5, 291–299 (2000).
[CrossRef] [PubMed]

1999 (1)

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

1998 (2)

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

1997 (2)

1996 (1)

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

1995 (2)

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

1993 (2)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

1983 (1)

B. C. Wilson, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Arridge, S. R.

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Baenziger, O.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemogynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Bucher, H. U.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Cady, E. B.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef] [PubMed]

Cheng, X.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemogynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Cope, M.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Dehghani, H.

Delpy, D. T.

E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Dietz, V.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Firbank, M.

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Frydrychowski, A. F.

J. Plucinski, A. F. Frydrychowski, J. Kaczmarek, W. Juzwa, “Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space,” J. Biomed. Opt. 5, 291–299 (2000).
[CrossRef] [PubMed]

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemogynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Hebden, J. C.

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

Hiraoka, M.

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Hoshi, Y.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Ito, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Juzwa, W.

J. Plucinski, A. F. Frydrychowski, J. Kaczmarek, W. Juzwa, “Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space,” J. Biomed. Opt. 5, 291–299 (2000).
[CrossRef] [PubMed]

Kaczmarek, J.

J. Plucinski, A. F. Frydrychowski, J. Kaczmarek, W. Juzwa, “Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space,” J. Biomed. Opt. 5, 291–299 (2000).
[CrossRef] [PubMed]

Kadoya, T.

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
[CrossRef] [PubMed]

Kato, C.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Keel, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Kohl, M.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Kohri, S.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Koizumi, H.

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Kuge, Y.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Maki, A.

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Mandeville, J. B.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemogynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Marota, J. J. A.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemogynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Mayanagi, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Obrig, H.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

Okada, E.

E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
[CrossRef] [PubMed]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

Plucinski, J.

J. Plucinski, A. F. Frydrychowski, J. Kaczmarek, W. Juzwa, “Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space,” J. Biomed. Opt. 5, 291–299 (2000).
[CrossRef] [PubMed]

Schweiger, M.

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Springett, R.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef] [PubMed]

Steinbrink, J.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

Strangman, G.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemogynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Tamaki, N.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Tamura, M.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Tanikawa, Y.

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
[CrossRef] [PubMed]

Uludag, K.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

van der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Villringer, A.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

von Siebenthal, K.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Watanabe, E.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Wilson, B. C.

B. C. Wilson, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Wolf, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wylezinska, M.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef] [PubMed]

Yamada, Y.

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
[CrossRef] [PubMed]

Yamamoto, T.

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
[CrossRef] [PubMed]

Yamashita, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Biomed. Opt. (2)

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

J. Plucinski, A. F. Frydrychowski, J. Kaczmarek, W. Juzwa, “Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space,” J. Biomed. Opt. 5, 291–299 (2000).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (2)

B. C. Wilson, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Neuroimage (2)

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemogynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol. (9)

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibers for the spatial resolution improvement of topographic images,” Phys. Med. Biol. 47, 3429–3440 (2002).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

Physiol. Meas. (1)

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Other (2)

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express2, 411–423 (1998), http://www.opticsexpress.org .
[CrossRef]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Adult head model used to evaluate the effects of superficial tissues on light propagation in the brain.

Fig. 2
Fig. 2

Detected intensity for an adult head model as a function of skull thickness predicted by Monte Carlo simulation.

Fig. 3
Fig. 3

Mean optical path length for an adult head model as a function of skull thickness predicted by Monte Carlo simulation.

Fig. 4
Fig. 4

Partial optical path length in the brain for an adult head model as a function of skull thickness predicted by Monte Carlo simulation.

Fig. 5
Fig. 5

Effect of skull thickness on spatial sensitivity profiles in the xz and xy planes. The skull thicknesses are (a) 4, (b) 7, (c) 10 mm.

Fig. 6
Fig. 6

Effect of skull thickness on the profile of the spatial sensitivity profile in the brain along the y axis at the midpoint of the source and the detector.

Fig. 7
Fig. 7

Detected intensity for an adult head model as a function of the CSF layer thickness predicted by Monte Carlo simulation.

Fig. 8
Fig. 8

Mean optical path length for an adult head model as a function of the CSF layer thickness predicted by Monte Carlo simulation.

Fig. 9
Fig. 9

Partial optical path length in the brain for an adult head model as a function of the CSF layer thickness predicted by Monte Carlo simulation.

Fig. 10
Fig. 10

Effect of the CSF layer thickness on the spatial sensitivity profiles in the xz and the xy planes. The CSF thicknesses are (a) 0.5, (b) 3, (c) 5 mm.

Fig. 11
Fig. 11

Effect of the CSF thickness on the spatial sensitivity profile in the brain along the y axis at the midpoint of the source and the detector.

Tables (1)

Tables Icon

Table 1 Thickness and Optical Properties for Each Layer of an Adult Head Model

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔOD=Δ lnI0/IΔμa headLhead,
ΔODΔμa scalpLscalp+Δμa skullLskull +Δμa CSFLCSF+Δμa gray matterLgray matter +Δμa white matterLwhite matter.
ΔOD=Δμa brainLgray matter+Lwhite matter =Δμa brainLbrain,
ODμa brainLbrain.
ODμa voxelx, y, zLvoxelx, y, z.
W=W0 exp -μaiLi,

Metrics