Abstract

Adequate modeling of light propagation in a human head is important for quantitative near-infrared spectroscopy and optical imaging. The presence of a nonscattering cerebrospinal fluid (CSF) that surrounds the brain has been previously shown to have a strong effect on light propagation in the head. However, in reality, a small amount of scattering is caused by the arachnoid trabeculae in the CSF layer. In this study, light propagation in an adult head model with discrete scatterers distributed within the CSF layer has been predicted by Monte Carlo simulation to investigate the effect of the small amount of scattering caused by the arachnoid trabeculae in the CSF layer. This low scattering in the CSF layer is found to have little effect on the mean optical path length, a parameter that can be directly measured by a time-resolved experiment. However, the partial optical path length in brain tissue that relates the sensitivity of the detected signal to absorption changes in the brain is strongly affected by the presence of scattering within the CSF layer. The sensitivity of the near-infrared signal to hemoglobin changes induced by brain activation is improved by the effect of a low-scattering CSF layer.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
    [CrossRef]
  2. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithm,” Anal. Biochem. 227, 54–68 (1995).
    [CrossRef] [PubMed]
  3. J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [CrossRef] [PubMed]
  4. H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
    [CrossRef] [PubMed]
  5. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org .
    [CrossRef]
  6. M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
    [CrossRef] [PubMed]
  7. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
    [CrossRef] [PubMed]
  8. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
    [CrossRef] [PubMed]
  9. H. Dehghani, D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
    [CrossRef]
  10. J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, H. Dehghani, “Boundary conditions for light propagation in diffuse media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).
    [CrossRef]
  11. K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
    [CrossRef] [PubMed]
  12. A. H. Hielscher, R. E. Alcuffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
    [CrossRef] [PubMed]
  13. M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
    [CrossRef] [PubMed]
  14. S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
    [CrossRef] [PubMed]
  15. M. B. Carpenter, J. Sutin, Human Neuroanatomy (Williams Wilkins, Baltimore, Md., 1983).
  16. E. Okada, D. T. Delpy, “Investigation of the effect of discrete scatterers in CSF layer on optical path length in the brain,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 196–203 (2000).
    [CrossRef]
  17. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [CrossRef] [PubMed]
  18. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
    [CrossRef] [PubMed]
  19. E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
    [CrossRef] [PubMed]
  20. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef] [PubMed]
  21. M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
    [CrossRef] [PubMed]
  22. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
    [CrossRef]
  23. B. C. Wilson, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  24. P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
    [CrossRef]
  25. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
    [CrossRef]

2002 (1)

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

2000 (4)

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef]

H. Dehghani, D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
[CrossRef]

J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, H. Dehghani, “Boundary conditions for light propagation in diffuse media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).
[CrossRef]

1999 (3)

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

1998 (4)

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcuffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org .
[CrossRef]

1997 (2)

1996 (1)

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

1995 (2)

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithm,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

1993 (2)

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

1987 (1)

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

1983 (1)

B. C. Wilson, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Alcuffe, R. E.

A. H. Hielscher, R. E. Alcuffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

Anday, E.

Arridge, S. R.

J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, H. Dehghani, “Boundary conditions for light propagation in diffuse media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).
[CrossRef]

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Baenziger, O.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Barbour, R. L.

A. H. Hielscher, R. E. Alcuffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

Bevilacqua, F.

Bucher, H. U.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Cady, E. B.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef]

Carpenter, M. B.

M. B. Carpenter, J. Sutin, Human Neuroanatomy (Williams Wilkins, Baltimore, Md., 1983).

Chance, B.

Cooper, C. E.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithm,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

Cope, M.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithm,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Dehghani, H.

Delpy, D. T.

H. Dehghani, D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
[CrossRef]

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithm,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

E. Okada, D. T. Delpy, “Investigation of the effect of discrete scatterers in CSF layer on optical path length in the brain,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 196–203 (2000).
[CrossRef]

Depeursinge, C.

Dietz, V.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Elwell, C. E.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithm,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Firbank, M.

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Gross, J. D.

Hebden, J. C.

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, R. E. Alcuffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

Hiraoka, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Hong, L.

Itagaki, H.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Ito, Y.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Keel, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Kennan, R.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Kohl, M.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Koizumi, H.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Li, C.

Maki, A.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Marquet, P.

Matcher, S. J.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithm,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

Murray, T.

Nieto-Vesperinas, N.

Nioka, S.

Obrig, H.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

Okada, E.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

E. Okada, D. T. Delpy, “Investigation of the effect of discrete scatterers in CSF layer on optical path length in the brain,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 196–203 (2000).
[CrossRef]

Ovetsky, Y.

Pidikiti, D.

Piguet, D.

Ripoll, J.

Schweiger, M.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Springett, R.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef]

Steinbrink, J.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

Sutin, J.

M. B. Carpenter, J. Sutin, Human Neuroanatomy (Williams Wilkins, Baltimore, Md., 1983).

Thomas, R.

Tromberg, B. J.

Uludag, K.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

van der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Villringer, A.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

von Siebenthal, K.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Wilson, B. C.

B. C. Wilson, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Wolf, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Worden, K.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wylezinska, M.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef]

Yamamoto, T.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Yamashita, Y.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Zhou, S.

Adv. Exp. Med. Biol. (1)

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

Anal. Biochem. (1)

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithm,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

Appl. Opt. (3)

J. Biomed. Opt. (2)

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, R. Kennan, “Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelength estimated by Monte Carlo simulation,” J. Biomed. Opt. 7, 51–59 (2002).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20, 280–289 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Med. Phys. (2)

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

B. C. Wilson, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Neuroimage (1)

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (9)

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcuffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissue measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Other (3)

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

M. B. Carpenter, J. Sutin, Human Neuroanatomy (Williams Wilkins, Baltimore, Md., 1983).

E. Okada, D. T. Delpy, “Investigation of the effect of discrete scatterers in CSF layer on optical path length in the brain,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 196–203 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the anatomical structure of the adult head.

Fig. 2
Fig. 2

Adult head model with discrete cylindrical scatterers in the CSF layer.

Fig. 3
Fig. 3

Mean optical path length for the adult head model as a function of source-detector spacing predicted by Monte Carlo simulation.

Fig. 4
Fig. 4

Mean optical path length measured on the forehead of volunteers by time-resolved instrumentation. The broken line is a regression line obtained from results for source-detector spacings of less than 30 mm.

Fig. 5
Fig. 5

Partial optical path length in the brain for the adult head model as a function of source-detector spacing predicted by Monte Carlo simulation.

Fig. 6
Fig. 6

Ratio of mean optical path length and partial optical path length in the brain for the adult head model with a low-scattering CSF layer to those for the model without a CSF layer as a function of volume density of the scatterers. The circles and triangles represent the results for the head model with the discrete scatterers in the CSF layer, and the curves represent the results for the simpler head model in which scattering is assumed to be homogeneous in the CSF layer.

Fig. 7
Fig. 7

Spatial sensitivity profiles in the xz and xy planes for a source-detector spacing of 30 mm. The model includes (a) a nonscattering CSF layer, (b) 10% volume density of scatterers in the CSF layer, (c) 20% volume density of scatterers in the CSF layer, (d) no CSF layer.

Fig. 8
Fig. 8

Spatial sensitivity profiles in the xz and xy planes for a source-detector spacing of 40 mm. The model includes (a) a nonscattering CSF layer, (b) 10% volume density of scatterers in the CSF layer, (c) 20% volume density of scatterers in the CSF layer, (d) no CSF layer.

Tables (1)

Tables Icon

Table 1 Thickness and Optical Properties for Each Layer of the Adult Head Model

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔODΔμa=Δ lnI0/IΔμaL,
ODμaiLi.
ODμavoxelx, y, zLvoxelx, y, z.

Metrics