Abstract

We propose a piezoelectric transducer- (PZT-) based optoelectronic frequency synchronizer to control simultaneously changes in the repetition rate, the relative pulse delay, and the phase noise of a passively mode-locked femtosecond Ti:sapphire laser with an intracavity saturable Bragg reflector absorber with respect to an electronic frequency reference. An optoelectronic phase-locked-loop-based PZT feedback controller with a proportional, integral, and differential (PID) circuit and a tunable voltage regulator is designed to achieve frequency synchronization, phase-noise suppression, and delay-time tuning. When the controlling voltage is tuned from -2.6 to 2.6 V, the maximum pulse-delay range, tuning slope, and tuning resolution of the laser pulse-train are 11.3 ns, 2.3 ps/mV, and 1.2 ps, respectively. Setting the gain constant of the PID circuit at 10 or larger causes the delay-time tuning function to be linearly proportional to the controlling voltage. In the delay-time tuning mode the uncorrelated single-side-band phase-noise density of the frequency-synchronized laser is approximately -120 dBc/Hz at an offset frequency of 5 kHz, which is only 7 dBc/Hz higher than that of the electrical frequency reference. The proposed system also supports linear, continuous switching, and programmable control of the delay time of Ti:sapphire laser pulses when they are frequency synchronized to external reference clocks.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett. 27, 312–314 (2002).
    [CrossRef]
  2. J.-M. Shieh, S.-C. Liu, C.-L. Pan, “Characterization and reduction of phase noise in passively mode-locked Ti:sapphire lasers with intracavity saturable absorbers,” J. Opt. Soc. Am. B 15, 1802–1806 (1998).
    [CrossRef]
  3. C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
    [CrossRef]
  4. L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire laser oscillators,” Phys. Rev. A 64, 021802 (2001).
    [CrossRef]
  5. G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
    [CrossRef]
  6. G.-R. Lin, “Optoelectronic delay-time controller for laser pulses,” Opt. Lett. 25, 799–801 (2000).
    [CrossRef]
  7. G.-R. Lin, Y.-L. Cheng, “Tuning the delay-time of harmonically mode-locked erbium-doped fiber laser pulses by a frequency-discriminated phase shifter,” Microwave Opt. Technol. Lett. 30, 168–170 (2001).
    [CrossRef]
  8. J.-M. Shieh, T.-C. Huang, K.-F. Huang, C.-L. Wang, C.-L. Pan, “Broadly tunable self-starting passively mode-locked Ti:sapphire laser with a triple-strained quantum-well saturable Bragg reflector,” Opt. Commun. 156, 53–57 (1998).
    [CrossRef]
  9. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
    [CrossRef]
  10. M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock, R. P. Leavitt, “Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror,” Opt. Commun. 137, 55–58 (1997).
    [CrossRef]
  11. D. E. Spence, J. M. Dudley, K. Lamb, W. E. Sleat, W. Sibbett, “Nearly quantum-limited timing jitter in a self-mode-locked Ti:sapphire laser,” Opt. Lett. 19, 481–483 (1994).
    [CrossRef] [PubMed]
  12. H. A. Haus, A. Mecozzi, “Noise of mode-locked lasers,” J. Quantum Electron. 29, 983–996 (1993).
    [CrossRef]
  13. G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
    [CrossRef]
  14. D. Von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
    [CrossRef]

2002

2001

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire laser oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

G.-R. Lin, Y.-L. Cheng, “Tuning the delay-time of harmonically mode-locked erbium-doped fiber laser pulses by a frequency-discriminated phase shifter,” Microwave Opt. Technol. Lett. 30, 168–170 (2001).
[CrossRef]

2000

G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
[CrossRef]

G.-R. Lin, “Optoelectronic delay-time controller for laser pulses,” Opt. Lett. 25, 799–801 (2000).
[CrossRef]

1998

J.-M. Shieh, S.-C. Liu, C.-L. Pan, “Characterization and reduction of phase noise in passively mode-locked Ti:sapphire lasers with intracavity saturable absorbers,” J. Opt. Soc. Am. B 15, 1802–1806 (1998).
[CrossRef]

J.-M. Shieh, T.-C. Huang, K.-F. Huang, C.-L. Wang, C.-L. Pan, “Broadly tunable self-starting passively mode-locked Ti:sapphire laser with a triple-strained quantum-well saturable Bragg reflector,” Opt. Commun. 156, 53–57 (1998).
[CrossRef]

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

1997

M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock, R. P. Leavitt, “Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror,” Opt. Commun. 137, 55–58 (1997).
[CrossRef]

1996

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

1994

1993

H. A. Haus, A. Mecozzi, “Noise of mode-locked lasers,” J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

1990

C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
[CrossRef]

1986

D. Von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

Chang, Y.-C.

G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
[CrossRef]

Cheng, Y.-L.

G.-R. Lin, Y.-L. Cheng, “Tuning the delay-time of harmonically mode-locked erbium-doped fiber laser pulses by a frequency-discriminated phase shifter,” Microwave Opt. Technol. Lett. 30, 168–170 (2001).
[CrossRef]

Chuang, Y.-H.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

Cundiff, S. T.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Dudley, J. M.

Foreman, S. M.

Hall, J. L.

Haus, H. A.

H. A. Haus, A. Mecozzi, “Noise of mode-locked lasers,” J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

Hayduk, M. J.

M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock, R. P. Leavitt, “Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror,” Opt. Commun. 137, 55–58 (1997).
[CrossRef]

Huang, K.-F.

J.-M. Shieh, T.-C. Huang, K.-F. Huang, C.-L. Wang, C.-L. Pan, “Broadly tunable self-starting passively mode-locked Ti:sapphire laser with a triple-strained quantum-well saturable Bragg reflector,” Opt. Commun. 156, 53–57 (1998).
[CrossRef]

Huang, T.-C.

J.-M. Shieh, T.-C. Huang, K.-F. Huang, C.-L. Wang, C.-L. Pan, “Broadly tunable self-starting passively mode-locked Ti:sapphire laser with a triple-strained quantum-well saturable Bragg reflector,” Opt. Commun. 156, 53–57 (1998).
[CrossRef]

Hwang, T.-S.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Johns, S. T.

M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock, R. P. Leavitt, “Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror,” Opt. Commun. 137, 55–58 (1997).
[CrossRef]

Johnson, C. K.

C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
[CrossRef]

Kapteyn, H. C.

R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett. 27, 312–314 (2002).
[CrossRef]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire laser oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Krol, M. F.

M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock, R. P. Leavitt, “Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror,” Opt. Commun. 137, 55–58 (1997).
[CrossRef]

Lamb, K.

Leavitt, R. P.

M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock, R. P. Leavitt, “Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror,” Opt. Commun. 137, 55–58 (1997).
[CrossRef]

Lin, G.-R.

G.-R. Lin, Y.-L. Cheng, “Tuning the delay-time of harmonically mode-locked erbium-doped fiber laser pulses by a frequency-discriminated phase shifter,” Microwave Opt. Technol. Lett. 30, 168–170 (2001).
[CrossRef]

G.-R. Lin, “Optoelectronic delay-time controller for laser pulses,” Opt. Lett. 25, 799–801 (2000).
[CrossRef]

G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
[CrossRef]

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

Liu, S.-C.

Ma, L.-S.

R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett. 27, 312–314 (2002).
[CrossRef]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire laser oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Mecozzi, A.

H. A. Haus, A. Mecozzi, “Noise of mode-locked lasers,” J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

Murnane, M. M.

R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett. 27, 312–314 (2002).
[CrossRef]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire laser oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Notcutt, M.

Pan, C.-L.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

J.-M. Shieh, T.-C. Huang, K.-F. Huang, C.-L. Wang, C.-L. Pan, “Broadly tunable self-starting passively mode-locked Ti:sapphire laser with a triple-strained quantum-well saturable Bragg reflector,” Opt. Commun. 156, 53–57 (1998).
[CrossRef]

J.-M. Shieh, S.-C. Liu, C.-L. Pan, “Characterization and reduction of phase noise in passively mode-locked Ti:sapphire lasers with intracavity saturable absorbers,” J. Opt. Soc. Am. B 15, 1802–1806 (1998).
[CrossRef]

Pollock, C. R.

M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock, R. P. Leavitt, “Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror,” Opt. Commun. 137, 55–58 (1997).
[CrossRef]

Qian, J.

C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
[CrossRef]

Shelton, R. K.

R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett. 27, 312–314 (2002).
[CrossRef]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire laser oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Shieh, J.-M.

J.-M. Shieh, T.-C. Huang, K.-F. Huang, C.-L. Wang, C.-L. Pan, “Broadly tunable self-starting passively mode-locked Ti:sapphire laser with a triple-strained quantum-well saturable Bragg reflector,” Opt. Commun. 156, 53–57 (1998).
[CrossRef]

J.-M. Shieh, S.-C. Liu, C.-L. Pan, “Characterization and reduction of phase noise in passively mode-locked Ti:sapphire lasers with intracavity saturable absorbers,” J. Opt. Soc. Am. B 15, 1802–1806 (1998).
[CrossRef]

Sibbett, W.

Sleat, W. E.

Spence, D. E.

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Von der Linde, D.

D. Von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

Wang, C.-L.

J.-M. Shieh, T.-C. Huang, K.-F. Huang, C.-L. Wang, C.-L. Pan, “Broadly tunable self-starting passively mode-locked Ti:sapphire laser with a triple-strained quantum-well saturable Bragg reflector,” Opt. Commun. 156, 53–57 (1998).
[CrossRef]

Wang, S.-C.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

Ye, J.

R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett. 27, 312–314 (2002).
[CrossRef]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire laser oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Appl. Phys. B

D. Von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

J. Opt. Soc. Am. B

J. Quantum Electron.

H. A. Haus, A. Mecozzi, “Noise of mode-locked lasers,” J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

Microwave Opt. Technol. Lett.

G.-R. Lin, Y.-L. Cheng, “Tuning the delay-time of harmonically mode-locked erbium-doped fiber laser pulses by a frequency-discriminated phase shifter,” Microwave Opt. Technol. Lett. 30, 168–170 (2001).
[CrossRef]

Opt. Commun.

J.-M. Shieh, T.-C. Huang, K.-F. Huang, C.-L. Wang, C.-L. Pan, “Broadly tunable self-starting passively mode-locked Ti:sapphire laser with a triple-strained quantum-well saturable Bragg reflector,” Opt. Commun. 156, 53–57 (1998).
[CrossRef]

M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock, R. P. Leavitt, “Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror,” Opt. Commun. 137, 55–58 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. A

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire laser oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Rev. Sci. Instrum.

C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of a typical passively mode-locked Ti:sapphire SBR laser: P1, P2, intracavity prism compensators; OC, optical coupler.

Fig. 2
Fig. 2

Block diagram of a PZT-based optoelectronic stabilizer: ÷N: frequency divider with divisor N; Buffer Amp., buffered amplifier, BPF, bandpass filter; FD, frequency discriminator; LPF’s, low-pass filters; RFS, referenced frequency synthesizer; other abbreviations defined in text.

Fig. 3
Fig. 3

Operating principle of the optoelectronic (OE) harmonic mixer illustrated in the frequency domain.

Fig. 4
Fig. 4

Frequency-synchronized IF signals with (a) V REF = 0 V (lower trace, in phase) and (b) V REF = 2.6 V (lower trace), compared with those of the reference clock (upper trace, out of phase). The relative shifts in delay time of the laser pulse train (c) with V REF = 0 V (lower trace) and (d) with V REF = 1.3 V (lower trace) are compared with the original shifts (upper traces).

Fig. 5
Fig. 5

Relative delay time of the passively mode-locked Ti:sapphire SBR laser pulse train as a function of controlling voltage (V REF) measured at several gain constants of a PID circuit.

Fig. 6
Fig. 6

Relative delay time (solid curve) and repetition rate (dotted curve) of the passively mode-locked Ti:sapphire SBR laser pulse train as a function of controlling voltage.

Fig. 7
Fig. 7

Short-term switching and holding test for delay-time tuning of the passively mode-locked Ti:sapphire SBR laser pulse train.

Fig. 8
Fig. 8

Radio frequency spectra measured by monitoring of the optoelectronic-converted signal from the passively mode-locked Ti:sapphire SBR laser pulse train with its delay-time switching for two values of V REF: RBW, resolution bandwidth; CF, center frequency.

Fig. 9
Fig. 9

SSB phase-noise density spectra of the 12th harmonic of the passively mode-locked Ti:sapphire SBR laser pulse train monitored at two controlling voltages.

Fig. 10
Fig. 10

Autocorrelated traces of passively mode-locked Ti:sapphire SBR laser pulses monitored at two controlling voltages.

Metrics